


# **BIONETICS**

SUMMARY OF MUTAGENICITY
SCREENING STUDIES
HOST-MEDIATED ASSAY
CYTOGENETICS
DOMINANT LETHAL ASSAY
CONTRACT FDA 71-268
COMPOUND FDA 71-46
SODIUM TRIPOLYPHOSPHATE

Summary of mutagenicity screening studies Host-Mediated Assay Cytogenetics Dominant Lethal Assay Contract FDA 71-268 Compound FDA 71-46 Sodium Tripolyphosphate

5516 Nicholson Lane Kensington, Maryland 20795



SUMMARY OF MUTAGENICITY
SCREENING STUDIES
HOST-MEDIATED ASSAY
CYTOGENETICS
DOMINANT LETHAL ASSAY
CONTRACT FDA 71-268
COMPOUND FDA 71-46
SODIUM TRIPOLYPHOSPHATE

#### SUBMITTED TO

FOOD & DRUG ADMINISTRATION
DEPARTMENT OF HEALTH, EDUCATION AND WELFARE
ROCKVILLE, MARYLAND

SUBMITTED BY

LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND

JANUARY 6, 1975





January 6, 1975

Mr. Leonard Appleby, Contracting Officer Department of Health, Education and Welfare Public Health Service Food and Drug Administration, CA-212 5600 Fishers Lane, Room 5C-13 Rockville, Maryland 20852

Reference: Contract FDA 71-268; LBI Project #2446

Dear Mr. Appleby:

Litton Bionetics, Inc., is pleased to submit a report for the referenced contract entitled "Mutagenicity Screening Studies" for compound FDA 71-46, Sodium Tripolyphosphate.

Included in this report are the results and raw data of the three tests conducted: Host-Mediated Assay, Cytogenetic Studies and Dominant Lethal Assay. Eight (8) copies are being submitted for your review.

Upon completion of the toxicology work an evaluation was made of our results to those appearing in the literature. In cases where our values were lower, the toxicology was repeated. In some instances either the Host-Mediated Assay, Dominant Lethal Assay and/or Cytogenetic Studies were also repeated at one or more levels to fulfill the requirements of the contract. In some cases, the acute and/or subacute assays were involved.

If there are any questions concerning this report, or, if additional information is required, please do not hesitate to contact us.

Sincerely,

LITTON BIONETICS, INC.

Robert J. Weir, Ph.D.

Vice President

RJW:11s Enclosures (8)

### TABLE OF CONTENTS

|      |           |                                                                                          | Pa                  | ige No |
|------|-----------|------------------------------------------------------------------------------------------|---------------------|--------|
| I.   | REPORT    |                                                                                          | •••••               | 1      |
|      | A.<br>B.  | Introduction                                                                             | • • • • •           | 1 .    |
|      | C.        | Objective                                                                                |                     | 2      |
|      |           | i. lest material                                                                         |                     | 3      |
|      | D.        | 2. Dosages                                                                               |                     | 3      |
|      | Ε.        | Summary                                                                                  |                     | 4<br>4 |
|      |           | TOST-Mediated Assay                                                                      |                     | 4      |
|      |           | 2. Cytogenetics                                                                          |                     | 4      |
|      |           | b. $\frac{\overline{\text{In}}}{\overline{\text{Vitro}}}$                                |                     | 4<br>4 |
|      |           | o. Duiinnant rethal                                                                      |                     | 5      |
|      |           | Results and Discussion                                                                   |                     | 5      |
|      |           | <ol> <li>Toxicity Data - Test I</li> <li>a. <u>In vivo</u></li> </ol>                    | ••••                | 5      |
|      |           | D. In vitro                                                                              |                     | 5<br>6 |
|      | •         | C. loxicity data sheets                                                                  |                     | 7      |
|      | •         | <ol> <li>Host-Mediated Assay - Test I</li> <li>Host-mediated assay summary sh</li> </ol> | ···· ]              |        |
|      | ,         | • MOST-Mediated assay data sheet                                                         | ٦ ،                 | 3<br>5 |
|      |           | oxicity pata - lest II                                                                   | 1                   |        |
|      | 4         | Toxicity data sheets                                                                     | ' A                 |        |
|      | •         | a. Host-mediated assay summary sh                                                        | •••• 4:<br>eets. 4: |        |
|      |           | υ· πυςτ-mediated assav data shoot                                                        | ٠ ٨٠                |        |
|      | S         | cytogenetics - lest I                                                                    |                     |        |
|      |           | a. <u>In vivo</u><br>b. <u>In vitro</u>                                                  | 64                  |        |
|      |           | Cytogenetic summary sheets                                                               | 61                  |        |
|      | 6         | · Cytogenetics - lest II                                                                 | . 60                |        |
|      | 7         | Cytogenetic summary sheets                                                               | 70                  |        |
|      | -         | Dominant Lethal Study - Test I                                                           | 73                  |        |
|      |           | D. SUDACUTE STUDY                                                                        | 73                  |        |
|      |           | boilinant lethal assay summary                                                           |                     |        |
|      | 8         | sheets                                                                                   | 74                  |        |
|      |           | Dominant lethal assay summary sheets                                                     |                     |        |
| ·II. | MATERIALS | S AND METHODS                                                                            |                     |        |
|      |           | nimal Husbandry                                                                          |                     |        |
|      |           | Allimais (Rats and Mice)                                                                 | 7.00                |        |
|      | 2.        | richaracion of Diet                                                                      | 100                 |        |
|      | 3.        | Husbandry                                                                                | 109                 |        |



# TABLE OF CONTENTS (continued)

|    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page    | No. |
|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| Ι. | MAT | ERIALS AND METHODS (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |     |
|    | В.  | Dosage Determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.00    | ٠   |
|    | ^   | -• Jungtine Minies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |     |
|    | С.  | incagenitity lesting protocols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111     |     |
|    |     | nost-mediated Assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 111   |     |
|    |     | Acute Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112     |     |
| ·  |     | Subacute study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77/     |     |
|    |     | c. In vitro study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11/     |     |
|    |     | cy togenetic studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 115     |     |
|    |     | a. III VIVO STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115     |     |
|    |     | D. III AICLO SCHOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 717     |     |
|    | D.  | Dominant Lethal Assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 710     |     |
|    | υ.  | supprementary materials and Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120     |     |
|    |     | •• Host-mediated Assay In Vitro and Formu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lae 120 |     |
|    |     | d. bacterial in vitro plate tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 120   |     |
|    |     | In Vitro for mitotic recombinat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ion 120 |     |
|    |     | • Minimal medium (bacteria)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121     |     |
|    |     | complete medium (bacteria)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122     |     |
|    |     | Complete medium (veast)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 122     |     |
|    |     | cytogenetics in vitro Preparation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |     |
|    |     | Anaphase Unromosomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 123     |     |
|    |     | J. Statistical Analyses of Dominant Letha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7       |     |
|    |     | studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 124     |     |
|    |     | a. The fertility index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 124   |     |
|    |     | D. IOTAL number of implantations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12/     |     |
|    |     | c. Total number of corpora lutea .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 124     |     |
|    |     | remplantation losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/     |     |
|    |     | bed implants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 105     |     |
|    |     | one or more dead implants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125     |     |
|    |     | 9. IWO OF MORE dead implants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 125     |     |
|    | Ε.  | n. Dead implants per total implants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125     |     |
|    | h • | Kererences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120     |     |
|    |     | The contract of the contract o | 128     |     |
|    |     | cy togenetics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120     |     |
|    | F.  | 3. Dominant Lethal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 129     |     |



### I. REPORT

### A. <u>Introduction</u>

Litton Bionetics, Inc. (LBI) has investigated the possible mutagenicity of compounds selected and provided by the Food and Drug Admin-. istration under Contract 71-268. LBI's investigation utilized the three mammalian test systems herein described -- Host-Mediated Assay, Cytogenetic Studies and Dominant Lethal Assay. These tests provide information as to the types of genetic damage caused by environmental compounds -- pesticides, chemicals, food additives, drugs and cosmetics.

The Host-Mediated Assay is based upon the assumption that the action of a mutagen on the genetics of bacteria is similar to that in man.

This is further strengthened by the use of an eukaryotic organism (Saccharomyces cerevisiae). Since the mutation frequencies are well established for the indicator organism, any deviation due to the action of the test compound is readily detectable. As some compounds are mutagenic in bacteria and not in the host animal, and vice versa, this test is able to differentiate an action which may have been due to hosts' ability to detoxify or potentiate a suspected mutagen. This action is dependent upon the ability of the compound to gain access to the peritoneal cavity. Coupled with the direct action of the compound on the indicator organism in vitro, the assay provides a clear insight into host-mediation of mutagenicity.

Cytogenetics provides a valuable tool for the direct observation of chromosomal damage in somatic cells. Alteration of the chromosome number and/or form in somatic cells may be an index of mutation. These studies utilized examination of bone marrow cells arrested in C-metaphase from rats exposed to the test compound as compared to positive and negative control animals. If mutational



changes occur, the types of damage expected due to the action of chemicals are structural rearrangements, breaks and other forms of damage to the chromosomal complement of the cells exposed.

For the <u>in vitro</u> cytogenetic studies, we have a more rapid and inexpensive means of determining chromosomal damage. This is accomplished by observing cells in anaphase. As the chromatids separate and move along the spindle, aberrations may occur. Chromatids which do not migrate to the daughter cells may lead to uneven distribution of parts or of entire chromatids (mitotic nondysjunction). These give rise to "side arm" bridges which have been interpreted as point stickiness or localized failures of chromosome duplication point errors. These aberrations (bridges, pseudochiasmata, multipolar cells, acentric fragments, etc.) are extremely sensitive indicators of genetic damage.

The Dominant Lethal Test is an accurate and sensitive measure of the amount and type of fetal wastage which may occur following administration of a potential mutagen. Dominant lethal mutations are indicators of lethal genetic lesions. The effects of mutagens on the chromosomal complement of the spermatozoa of treated males results in alterations of form and number of chromosomes. Structural rearrangements and aneuploidy may lead to the production of non-viable zygotes, early and late fetal deaths, abortions and congenital malformations. In addition, aberrations could lead to sterility or reduced reproductive capacity of the  $\mathsf{F}_1$  generation. The action of a mutagen on specific portions of spermatogenesis is also apparent in this test.

### B. Objective

The purpose of these studies is to determine any mutagenic effect of the test compound by employing the Host-Mediated Assay, Cytogenetic Studies



and the Dominant Lethal Assay, both  $\underline{in}$   $\underline{vivo}$  and  $\underline{in}$   $\underline{vitro}$  tests are employed with the cytogenetic and microbial test systems. These tests and their descriptions are referenced in the Appendices A through F.

### C. Compound

#### 1. Test Material

Compound FDA 71-46, Sodium Tripolyphosphate, Lot #3063, as supplied by the Food and Drug Administration.

### 2. Dosages

The animals employed, the determination of the dosage levels and the route of administration are contained in the technical discussion.

The dosage levels employed for compound FDA 71-46 are as follows for the Cytogenetic Studies  $\underline{\text{in vivo}}$  in rats.

|                                                               | Test I <sup>+</sup>                    | Test II <sup>+</sup>                            |
|---------------------------------------------------------------|----------------------------------------|-------------------------------------------------|
| Low Level Intermediate Level LD <sub>5</sub> Negative Control | 2.5 mg/kg<br>25.0 mg/kg<br>250.0 mg/kg | 1100.0 mg/kg (subacute)<br>2500.0 mg/kg (acute) |
| Positive Control (TEM*)                                       | Saline<br>0.3 mg/kg                    | Saline<br>0.3 mg/kg                             |

The dosage levels employed for compound FDA 71-46 are as follows for the Host-Mediated Assay  $\underline{\text{in vivo}}$  in mice.

|                                                                                     | Test I <sup>+</sup>                                                        | Test II <sup>+</sup>                                                                   |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Low Level Intermediate Level LD5 Negative Control Positive Control (EMS**) (DMN***) | 2.5 mg/kg<br>25.0 mg/kg<br>250.0 mg/kg<br>Saline<br>350 mg/kg<br>100 mg/kg | 1100.0 mg/kg (subacute)<br>2500.0 mg/kg (subacute)<br>Saline<br>350 mg/kg<br>100 mg/kg |

Triethylene Melamine



<sup>\*\*</sup> Ethyl Methane Sulfonate

<sup>\*\*\*</sup> Dimethyl Nitrosamine

<sup>+</sup> These two tests were performed at different time intervals.

The dosage levels employed for compound FDA 71-46 are as follows for the Dominant Lethal Assay  $\underline{\text{in } \text{vivo}}$  in rats.

|                                                    | Test I <sup>+</sup>                    | Test II <sup>+</sup>                                                   |
|----------------------------------------------------|----------------------------------------|------------------------------------------------------------------------|
| Low Level<br>Intermediate Level<br>LD <sub>5</sub> | 2.5 mg/kg<br>25.0 mg/kg<br>250.0 mg/kg | 1100.0 mg/lig /gul                                                     |
| Negative Control Positive Control (TEM*)           | Saline<br>0.3 mg/kg                    | 1100.0 mg/kg (subacute)<br>2500.0 mg/kg (acute)<br>Saline<br>0.3 mg/kg |

The  $\underline{\text{in vitro}}$  Cytogenetic Studies were performed employing three logarithmic dose levels.

| Low Level          | 0.1   | mcg/ml |
|--------------------|-------|--------|
| Medium Level       |       | mcg/ml |
| High Level         |       | mcg/ml |
| Negative Control   | Salin |        |
| Positive Control ( | T-11. | mcg/ml |

The discussion of this test is contained in the technical discussion.

D. <u>Methods</u>

The protocols employed are explained in Appendices C and D.

E. <u>Summary</u>

Host-Mediated Assay

This compound was non-mutagenic when tested in the Host-Mediated Assays and in vitro test against Salmonella TA-1530 and G-46 and Saccharomyces D3 except for a significant increase in the subacute high D3 test.

### Cytogenetics

### a. <u>In vivo</u>

The compound produced no detectable significant aberration of the bone marrow metaphase chromosomes of rats when administered orally at the dosage levels employed in this study.

<sup>+</sup>These two tests were performed at different time intervals.



<sup>\*</sup>Triethylene Melamine

### b. <u>In vitro</u>

The compound produced no significant aberration in the anaphase chromosomes of human tissue culture cells when tested at the dosage levels employed in this study.

### Dominant Lethal

This compound was considered to be non-mutagenic in this assay system when used at the dosage levels employed in this study in rats.

### F. Results and Discussion

Toxicity Data - Test I

### a. <u>In vivo</u>

Compound FDA 71-46 was suspended in 0.85% saline and administered to 10 male rats by oral intubation. The average weight of the animals was 340 grams and each received a dose of 5000 mg/kg. Ten out of ten animals were found dead within two days. Necropsy findings were vascular stomach linings with a foamy-like substance, and reddened intestinal lining.

Dose levels of 10, 50, 100, 500, 1000, and 2000 mg/kg were selected to determine an acute  $\ensuremath{\text{LD}_{50}}.$ 

The toxicity data is presented on the  $\ensuremath{\text{LD}}_{50}$  reporting form using the Litchfield-Wilcoxson method.

The LD $_{50}$  was determined as 285 mg/kg. The LD $_{5}$  dose level was derived from the raw data LD $_{50}$  probit line (uncorrected). The LD $_{50}$  derived from both corrected probit line and the uncorrected probit line were within confidence limits of each other. The acute doses used were LD $_{5}$  - 250 mg/kg, intermediate - 25 mg/kg and usage level - 2.5 mg/kg. The subacute dose levels used were the same as those for the acute. The data on the dose levels, numbers of animals and the necropsy findings are presented in the toxicity data sheets.



### b. <u>In vitro</u>

The compound was suspended in 0.85% saline.

Varying concentrations were added to tubes containing WI-38 cells and the cells were observed for CPE and mitosis as shown below.

| Tube<br>No. | No. of Cells      | Conc. mcg/ml | CPE        | Mitosis |
|-------------|-------------------|--------------|------------|---------|
| 1           | 5X10 <sup>5</sup> | 1000         | +          | +       |
| 2           | 5X10 <sup>5</sup> | 1000         | <u>+</u>   | +       |
| 3           | 5X10 <sup>5</sup> | 100          | <u>+</u>   | +       |
| 4           | 5X10 <sup>5</sup> | 100          | +          | +       |
| 5           | 5X10 <sup>5</sup> | 10           | -          | +       |
| 6           | 5X10 <sup>5</sup> | 10           | _          | +       |
| 7           | 5X10 <sup>5</sup> | 1.0          | -          | +       |
| 8           | 5X10 <sup>5</sup> | 1.0          | <b>-</b> , | +       |
| 9           | 5X10 <sup>5</sup> | 0.1          | <u>.</u>   | +       |
| 10          | 5X10 <sup>5</sup> | 0.1          | -          | +       |
|             |                   |              |            |         |

As was observed from the above data there was no inhibition of mitosis, but a CPE seen as clumping of the cells was observed.



c. TOXICITY DATA SHEETS

CONTRACT FDA 71-268

COMPOUND FDA 71-46

SODIUM TRIPOLYPHOSPHATE

TEST I



### TOXICITY DATA

### COMPOUND FDA 71-46

Solvent:

0.85% saline

Dosage Form: Suspension

Animals:

Male rats with an average body weight of 340 grams. All animals were observed for 10 days.

### Range Finding:

| ose <u>#</u><br>g/kg # | <u>Dead</u><br>Animals        | Day of Death and Necropsy                           |
|------------------------|-------------------------------|-----------------------------------------------------|
| 000                    | 10/10                         | Day 1 and Day 2:                                    |
|                        |                               | Vascular stomach linings with foamy-like substance. |
|                        |                               | •                                                   |
| 10                     | 0/5                           | None                                                |
| 50                     | 0/5                           | None                                                |
| 100                    | 0/5                           | None                                                |
| 500                    | 4/5                           | Day 3 (4):                                          |
| •                      |                               | Vascular stomach linings with foamy-like substance. |
| 000                    | 5/5                           | Day 3 (2) and Day 4 (1):                            |
|                        |                               | Vascular stomach linings with foamy-like substance. |
| 2000                   | 5/5                           | Day 3 (5):                                          |
|                        |                               | Vascular stomach linings with foamy-like substance. |
|                        | 10<br>50<br>100<br>500<br>500 | # Animals  10                                       |



### LD50 REPORTING FORM USING LITCHFIELD-WILCOXON METHOD

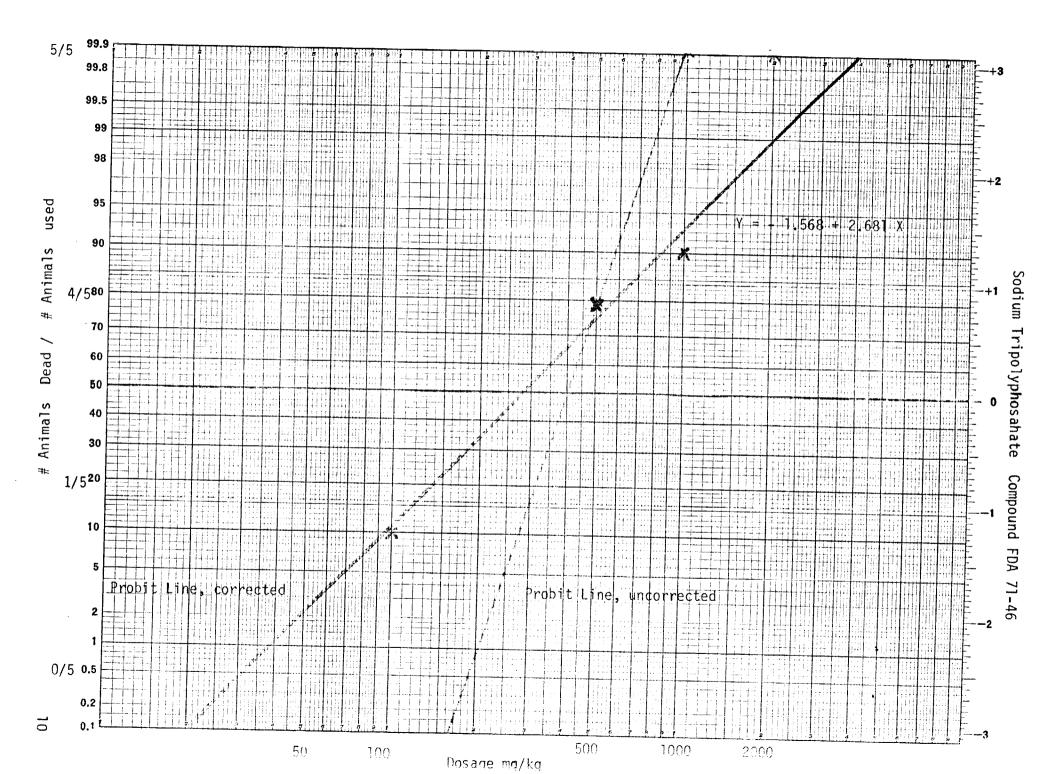
DOSE EFFECT CURVE FOR Compound FDA 71-46
Sodium Tripolyphosphate
FDA Contract 71-268

| DOSE | PROPORTION | OBSERVED<br>PERCENT | EXPECTED PERCENT | OBS-EXPT<br>PERCENT | CONTRIB.<br>TO (chi) <sup>2</sup> |
|------|------------|---------------------|------------------|---------------------|-----------------------------------|
| 100  | .5/5       | .100                | .113             | 013                 | .008                              |
| 500  | 4/5        | .800                | .745             | + .055              | .080                              |
| 1000 | 4.5/5      | .900                | .929             | 029                 | .062                              |
|      |            |                     |                  |                     |                                   |
|      |            |                     |                  |                     | was a company                     |
|      |            |                     |                  |                     |                                   |

Total animals =  $\frac{15}{150}$ Number Doses, K =  $\frac{3}{150}$ Animals/Dose =  $\frac{5}{150}$ Decrees of Freedom,  $n=k-2=\frac{1}{150}$ (CHI) 2 for n of  $k-2=\frac{3.84}{150}$  since  $\frac{150}{150}$  is less than  $\frac{3.84}{150}$ ,

therefore data not significantly heterogeneous

LD<sub>84</sub> = 685


 $LD_{82} = 005$   $LD_{50} = 285$   $LD_{16} = 122$ 

 $fLD_{50} = S = \frac{2.77}{\sqrt{N!}} = \frac{2.3698}{\sqrt{N!}} = \frac{2.77}{\sqrt{N!}} = \frac{2.3698}{\sqrt{5}} = \frac{2.906}{\sqrt{5}}$ 

 $LD_{50} \times feD_{50} = 828.2$ 

 $\frac{\text{LD}_{50}}{\text{fLD}_{50}} = \frac{98.1}{\text{CD}_{50}}$ 

LD<sub>50</sub> and 19/20 Confidence Limits =  $\frac{P(98 \text{ LD}_{50} \text{ 828}) = .95}{Attached}$  should be a plot of the dose-effect curve on log-probit paper.



INTED

# Host-Mediated Assay - Test I

Compound FDA 71-46 caused no significant increases in mutant frequencies when tested against <u>Salmonella</u> TA-1530 and G-46 either in the Host-Mediated Assays or <u>in vitro</u> tests against <u>Saccharomyces</u> D3. The compound caused no increase in the recombinant frequencies in <u>in vitro</u> tests; however, increases were found in the <u>in vivo</u> tests. The subacute high dose group showed the highest frequency. This compound may require additional testing to determine its actual effect.



Compound: 71-46

Sodium Tripolyphosphate

|                          |          |                                                         | In Vivo                 |                                                                                                                                                                                                                            |
|--------------------------|----------|---------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Indicator Strain</u>  | In Vitro | Possible<br>Low Recoveries                              | <u>Controls</u>         | Other Comments                                                                                                                                                                                                             |
| TA-1530<br>10/6/72 (a11) | pos.     | NC<br>PC<br>AI<br>AH<br>SANC<br>SAL<br>SAI<br>SAH       | NC OK PC LOW SANG       | <ol> <li>All doses negative</li> <li>One or two acute         recoveries were a little         low although the         reversion frequencies         appear unaffected.</li> </ol>                                        |
| G-46<br>9/22/72 (all)    | pos.     | NC<br>PC<br>AL<br>AI<br>AH<br>SANC<br>SAL<br>SAI<br>SAH | NC OK<br>PC LOW<br>SANE | 1. All doses negative                                                                                                                                                                                                      |
| D3 9/1/72 (a11)          | pos.     | NC<br>PC<br>AL<br>AI<br>AH<br>SANC<br>SAL<br>SAI<br>SAH | NC LOW PC LOW           | <ol> <li>All acute doses negative</li> <li>Data for SAH indicates         that the increase may         be significant. Assuming         the NC and PC are true         reflections of untreated         cells.</li> </ol> |

Cheste: PC dates says 73 instal of 72

Summary: The comments made on evaluation of report FDA 71-45 regarding the control frequencies for TA-1530, G-46 and D3 apply to this evaluation. The bacterial results for this compound are negative. The yeast results are somewhat more difficult to interpret because I am used to seeing negative control Mean C over Mean B rations of about 5. If these lower controls are not unusually depressed then I

would say that one (SAH) and possibly more doses show a weak response to this compound. Even the <u>in vitro</u> D3 shows a doubling.

The low bacterial and yeast controls might affect acceptance of this report.

a. HOST-MEDIATED ASSAY SUMMARY SHEETS

CONTRACT FDA 71-268

COMPOUND FDA 71-46

SODIUM TRIPOLYPHOSPHATE

TEST I



HOST MEDIATED ASSAY SUMMARY SHEET

| COMPOUND:                          | FDA 71-46                           |                               |                             |                                            |                                       |                              |
|------------------------------------|-------------------------------------|-------------------------------|-----------------------------|--------------------------------------------|---------------------------------------|------------------------------|
|                                    | TA                                  | SALM<br>1530                  | ONELLA<br>G-4               | 6                                          | SACCHAROMY                            | CES D-3                      |
| ACUTE                              | MMF<br>(X 10E-                      | MFT/MFC<br>8)                 | MMF<br>(X 10E-8)            | MFT/MFC                                    | MRF<br>(X 10E-5)                      | MRT/MRC                      |
| NC<br>PC<br>AL<br>AI<br>LD5        | .68<br>8.75<br>1.08<br>1.06<br>1.54 | 12.87<br>1.59<br>1.56<br>2.26 | .64<br>14.40<br>.75<br>1.56 | 22.50<br>1.17<br>2.44<br>2.13              | 2.75<br>23.09<br>8.26<br>7.25<br>8.42 | 8.40<br>3.00<br>2.64<br>3.06 |
| SUBACUTE<br>NC<br>SL<br>SI<br>SLD5 | .68<br>.88<br>1.16<br>.67           | 1.29<br>1.71<br>.99           | .64<br>.86<br>.58<br>.70    | 1.38<br>.91<br>1.09                        | 2.75<br>9.61<br>6.96<br>10.96         | 3.49<br>2.53<br>3.99         |
| IN VITRO TCPD NC PC                | TA1530<br>-<br>-<br>+               | G-46<br>-<br>-<br>+           | % CONC<br>5.0<br>-<br>0.5   | D-3<br>% SURVIVAL<br>71.8<br>100.0<br>68.8 | R X 10E5<br>5<br>267                  | t.                           |

b. HOST-MEDIATED ASSAY DATA SHEETS

CONTRACT FDA 71-268

COMPOUND FDA 71-46

SODIUM TRIPOLYPHOSPHATE

TEST I



COMPOUND: FDA 71-46 ORGANISM: SALMONELLA TA1530

DOSE LEVEL: NEGATIVE CONTROL - SALINE

TREATMENT: IN VIVO, ORAL, ACUTE DATE STARTED: OCTOBER 6, 1972

|                  | A                       | В                         | С                                    | D                                |
|------------------|-------------------------|---------------------------|--------------------------------------|----------------------------------|
| ANIMAL<br>NU-BER | RAW CFU X<br>10E7/0.6ML | TOTAL CFU X<br>10E8/1.0ML | TOTAL NO.<br>MUTANTS X<br>10E0/1.0ML | MUTATION<br>FRE (C/S)<br>X 10E-S |
| 1 2              | 10.10                   | 1.68                      | 1.00                                 | •59                              |
|                  | 7.00                    | 1.17                      | 1.00                                 | •85                              |
| 3                | 7.40                    | 1.23                      | 1.00                                 | .81                              |
| 4                | <b>18.</b> 50           | 3.08                      | 2.00                                 | •65                              |
| 5                | <b>27.</b> 30           | 4.55                      | 2.00                                 | • <b>4</b> 4                     |
| 5                | 26.90                   | 4.48                      | 3 <b>.0</b> 0                        | •67                              |
| 7                | <b>გ</b> •30            | 1.35                      | 1.00                                 | .72                              |

NO. OF ANIMALS EQUALS 7
TOTAL CFU CUT OF RANGE EQUALS 2
SAMPLES ATTH ZERO AUTANTS EQUAL 1

| MEAN<br>RANGE | COL. (<br>(X 1026)<br>2.51<br>3.38 | COL. C<br>(X 10E0)<br>1.57<br>2.00 | COL. D<br>(X 10E-8)<br>.62<br>.42 |
|---------------|------------------------------------|------------------------------------|-----------------------------------|
| MAX           | 4.55                               | 3.00                               | • 66                              |
| MIN           | 1.17                               | 1.00                               | • 64                              |

### \* SUMMARY WITH OUTLIERS REMOVED

|       | COL. B       | COL. C   | COL. D    |
|-------|--------------|----------|-----------|
|       | (X 10E8)     | (X 10E0) | (X 10E-8) |
| MEAN  | 2.17         | 1.50     | •72       |
| RANGE | <b>3.</b> 32 | 2.00     | .26       |
| MAX   | 4.46         | 3.00     | •86       |
| MIN   | 1.17         | 1.00     | •59       |

COMPOUND: FDA 71-46 ORGANISM: SALMONELLA TA1530

DOSE LEVEL: POSITIVE CONTROL - DMN - 100 MG/KG

TREATMENT: IN VIVO, ORAL, ACUTE DATE STARTED: OCTOBER 6, 1972

| ANIMAL<br>NUMBER                     | A<br>RAW CFU X<br>10E7/0.6ML                                         | B<br>TOTAL CFU X<br>10E8/1.0ML                               | C<br>TOTAL NO.<br>MUTANTS X<br>10E0/1.0ML                            | D<br>MUTATION<br>FRE (C/B)<br>X 10E-8                          |   |
|--------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|---|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 13.50<br>22.60<br>14.70<br>24.40<br>26.90<br>15.50<br>26.30<br>19.60 | 2.25<br>3.77<br>2.45<br>4.07<br>4.48<br>2.58<br>4.38<br>3.27 | 40.00<br>24.00<br>15.00<br>48.00<br>33.00<br>17.00<br>25.00<br>27.00 | 17.78<br>6.37<br>6.12<br>11.80<br>7.36<br>6.58<br>5.70<br>8.27 | × |
| NO OF ANT                            | MALC FOLIALO                                                         | 0                                                            |                                                                      |                                                                |   |

NO. OF ANIMALS EQUALS 8
NO. OF CONTAMINATED EQUALS 1
TOTAL CFU OUT OF RANGE EQUALS 1

| MEAN<br>RANGE<br>MAX<br>MIN | COL. B<br>(X 10E8)<br>3.41<br>2.23<br>4.48<br>2.25 | COL. C<br>(X 10E0)<br>28.63<br>33.00<br>48.00<br>15.00 | COL. D<br>(X 10E-8)<br>8.75<br>12.07<br>17.78<br>5.70 |
|-----------------------------|----------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
|-----------------------------|----------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|

# " SUMMARY WITH OUTLIERS REMOVED

| MEAN<br>RANGE<br>MAX<br>MIN | COL. 8<br>(X 10E8)<br>3.57<br>2.03<br>4.48<br>2.45 | COL. C<br>(X 10E0)<br>27.00<br>33.00<br>48.00<br>15.00 | COL. D<br>(X 10E-8)<br>7.46<br>6.10<br>11.80<br>5.70 |
|-----------------------------|----------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|
|-----------------------------|----------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|

STOP

COMPOUND: FDA 71-46

STUP

ORGANISM: SALMONELLA ,TA1531

DOSE LEVEL: LOW - 2.50 MG/KG

TREATMENT: IN VIVO, ORAL, ACUTE

DATE STARTED: OCTOBER 6, 1972

|                       | A                                              | В                                            | С                                            | ņ                                |   |
|-----------------------|------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------|---|
| ANIMAL<br>NUMBER      | RAW CFU X<br>10E7/0.6ML                        | TOTAL CFU X<br>10E8/1.0ML                    | TOTAL NO.<br>MUTANTS X<br>10E0/1.0ML         | MUTATION<br>FRE (C/R)<br>X 10E-8 |   |
| 1<br>3<br>4<br>5<br>6 | 8.90<br>6.80<br>15.20<br>15.80<br>7.10<br>8.30 | 1.48<br>1.13<br>2.53<br>2.63<br>1.18<br>1.38 | 1.00<br>1.00<br>2.00<br>2.00<br>3.00<br>2.00 | .67<br>.88<br>.79<br>.76<br>2.54 | * |
| 7<br>8                | 19.40<br>19.70                                 | 3.23<br>3.28                                 | 2.00<br>3.00                                 | .62<br>.91                       |   |

HO. OF ARTIMALS EQUALS 8
TOTAL CFU OUT OF REMGE EQUALS 1
SAUPLES WITH ZERO MUTANTS EQUAL

|       | COL.     | COL. C   | COL. D    |
|-------|----------|----------|-----------|
|       | (X 1028) | (X 10E0) | (X 10E-8) |
| MEAN  | 2.11     | 2.00     | 1.08      |
| RANGE | 2.15     | 2.00     | 1.92      |
| MAX   | 3•2∂     | 3.00     | 2.54      |
| MIN   | 1.13     | 1.00     | •62       |

### \* SUMMARY WITH OUTLIERS REMOVED

|       | COL. B   | COL. C   | COL. D    |
|-------|----------|----------|-----------|
|       | (X 10E8) | (X 10E0) | (X 10E-8) |
| MEAN  | 2.24     | 1.86     | •87       |
| RANGE | 2.15     | 2.00     | • 33      |
| MAX   | 3•25     | 3.00     | 1.45      |
| MIN   | 1.13     | 1.00     | •62       |

18

COMPOUND: FDA 71-46

ORGANISM: SALMONELLA TA1530

DOSE LEVEL: INTERMEDIATE - 25.0 MG/KG

TREATMENT: IN VIVO, ORAL, ACUTE DATE STARTED: OCTOBER 6, 1972

|                                 | Α                                                        | 8                                                    | C<br>TOTAL NO.                                     | D                                                  |
|---------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| ANIMAL<br>RUMBER                | RAW CFU X<br>10E7/0.6ML                                  | TOTAL CFU X<br>10E8/1.0mL                            | MUTANTS X<br>10E0/1.0ML                            | MUTATION<br>FRE (C/R)<br>X 10E-8                   |
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 12.50<br>8.90<br>7.20<br>8.10<br>30.20<br>24.20<br>11.50 | 2.08<br>1.48<br>1.20<br>1.35<br>5.03<br>4.03<br>1.97 | 3.00<br>3.00<br>1.00<br>2.00<br>2.00<br>1.00       | 1.44<br>2.02<br>.83<br>1.48<br>.40<br>.25<br>1.02  |
| HO. OF AR                       | IMALS EQUALS<br>OUT OF RANGE E                           | 7<br>[QUALS 3                                        |                                                    |                                                    |
| -0 OUTLIE                       | MEAN<br>RANGE<br>MAX<br>MIN                              | COL. 5<br>(X 10db)<br>2.45<br>3.83<br>5.03<br>1.20   | COL. C<br>(X 10E0)<br>2.00<br>2.00<br>3.00<br>1.00 | CCL. D<br>(X 10E-3)<br>1.05<br>1.77<br>2.02<br>.25 |

| COMPOUND: FDA 71-46 | ORGANISM: SALMONELLA TA1530 |
|---------------------|-----------------------------|

DOSE LEVEL: LD5 - 250 MG/KG

TREATHENT: IN VIVO, ORAL, ACUTE DATE STARTED: OCTOBER 6, 1972

|                  | A                       | В .                       | C                                    | Ď                                |          |
|------------------|-------------------------|---------------------------|--------------------------------------|----------------------------------|----------|
| ANIMAL<br>NUMBER | RAW CFU X<br>10E7/0.6ML | TOTAL CFU X<br>10E8/1.0FL | TOTAL NO.<br>MUTANTS X<br>10E0/1.0ML | MUTATION<br>FRE (C/D)<br>X 105-3 |          |
| 1                | 17.00                   | 2.83                      | 2.00                                 | .71                              |          |
| 2                | 6.30                    | 1.05                      | 1.00                                 | • 95                             |          |
| 3                | 17.00                   | 2.63                      | 2.00                                 | .71                              |          |
| 4                | 12.83                   | 2.13                      | 2.00                                 | .94                              |          |
| 5                | 7.00                    | 1.17                      | 6.00                                 | 5.14                             | <b>%</b> |
| 6                | 11.90                   | <b>1.9</b> 8              | 2.00                                 | 1.01                             |          |
| 7                | 44.00                   | 7.33                      | 11.00                                | 1.50                             |          |
| 8                | 8.90                    | 1.48                      | 2.00                                 | 1.35                             |          |

NO. OF ANIMALS EQUALS 8
TOTAL CFU OUT OF RANGE EQUALS 2

|       | COL. 3<br>(x <b>1</b> 0%8) | COL. C<br>(X 10E8) | COL. D<br>(x 105-0) |
|-------|----------------------------|--------------------|---------------------|
| MEAN  | 2.60                       | 3.50               | 1.54                |
| RANGE | <b>6.</b> 2ô               | 10.00              | 4.44                |
| MAX   | <b>7.</b> 33               | 11.00              | 5.10                |
| MIN   | 1.05                       | 1.00               | .71                 |

### \* SUMMARY WITH OUTLIERS REMOVED

| COL. b       | COL. C                           | COL. D                                                     |
|--------------|----------------------------------|------------------------------------------------------------|
| (X 10cb)     | (X 10EU)                         | (X 10E-8)                                                  |
| 2.81         | 3.14                             | 1.02                                                       |
| 6.28         | 10.00                            | •79                                                        |
| <b>7.</b> 33 | 11.00                            | 1.50                                                       |
| 1.05         | 1.00                             | •71                                                        |
|              | (X 10E8)<br>2.81<br>6.28<br>7.35 | (X 10E6) (X 10E0)<br>2.81 3.14<br>6.28 10.00<br>7.33 11.00 |

COMPOUND: FDA 71-46 ORGANISM: SALMONELLA TA1530

LOSE LEVEL: LOW - 2.50 MG/KG

TREATMENT: IN VIVO, ORAL, SUBACUTE DATE STARTED: OCTOBER 6, 1972

|        | A             | В .         | C          | ס         |
|--------|---------------|-------------|------------|-----------|
|        |               |             | TOTAL NO.  | MUTATION  |
| ANIMAL | RAW CFU X     | TOTAL CFU X | MUTANTS X  | FRE (C/B) |
| NUMBER | 10E7/0.6ML    | 10E8/1.0ML  | 10E0/1.0ML | X 10E-8   |
| i      | 10.50         | 1.75        | 1.00       | •57       |
| 2      | 14.90         | 2.48        | 4.00       | 1.61      |
| 3      | <b>39.</b> 90 | 6.65        | 2.00       | •30       |
| 4      | 17.10         | 2.85        | 4.00       | 1.40      |
| 5      | 29.50         | 4.93        | 5.00       | 1.01      |
| 6      | <b>25.</b> 50 | 4.25        | 3.00       | 71        |
| 7      | 19.10         | 3.18        | 2.00       | •63       |
| 3      | 36.70         | 6.12        | 5.00       | .82       |
| 9      | 42.70         | 7.12        | 6.00       | -84       |
|        |               |             |            |           |

HO. OF ANIMALS EQUALS 9
TOTAL CFU OUT OF RANGE EQUALS 1

|       |              |                        | COL. D<br>(x 10E=2)                                            |
|-------|--------------|------------------------|----------------------------------------------------------------|
| MEAN  | 4.37         | 3.56                   | •88                                                            |
| RANGE | 5.37         | 5.00                   | 1.31                                                           |
| MAX   | 7.12         | 6.0 <b>0</b>           | 1.61                                                           |
| MIN   | 1.75         | 1.00                   | •3≎                                                            |
|       | RANGE<br>MAX | RANGE 5.37<br>MAX 7.12 | (X 10E3) (X 10E0) MEAN 4.37 3.56 RANGE 5.37 5.00 MAX 7.12 6.00 |

40 OUTLIERS

TOP

21

COMPOUND: FDA 71-46 ORGANISM: SALMONELLA TA1530

DOSE LEVEL: INTERMEDIATE - 25.0 MG/KG

TREATMENT: IN VIVO, ORAL, SUBACUTE DATE STARTED: OCTOBER 6, 1972

| ANIMAL<br>NUMBER                | A<br>RAW CFU X<br>10E7/0.6ML                             | B<br>TOTAL CFU X<br>10E8/1.0ML               | C<br>TOTAL NO.<br>MUTANTS X<br>10E0/1.0ML            | D<br>MUTATION<br>FRE (C/B)<br>X 10E-8            |
|---------------------------------|----------------------------------------------------------|----------------------------------------------|------------------------------------------------------|--------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 12.30<br>8.90<br>41.70<br>7.00<br>10.50<br>24.90<br>7.60 | 2.05<br>1.48<br>6.95<br>1.17<br>1.75<br>4.15 | 5.00<br>1.00<br>2.00<br>1.00<br>1.00<br>7.00<br>2.00 | 2.44<br>.67<br>.29<br>.86<br>.57<br>1.69<br>1.58 |

NO. OF ANIMALS EQUALS 7 TOTAL CFU OUT OF RANGE EQUALS

|            | MEAN<br>RANGE<br>MAX<br>MIN | (X 10E8)<br>2.69<br>5.78<br>6.95<br>1.17 | COL. C<br>(X 10E0)<br>2.71<br>6.00<br>7.00<br>1.00 | COL. D<br>(X 10E-8)<br>1.16<br>2.15<br>2.44 |
|------------|-----------------------------|------------------------------------------|----------------------------------------------------|---------------------------------------------|
| O OUTLIERS |                             |                                          |                                                    | • /                                         |

STOP SRU'S:.6

| COMPOUND:                       | FDA 71-46                                                |                                                      | ORGANISM: SAL                                | MONELLA TA1530                                |
|---------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------|-----------------------------------------------|
| JOSE LEVE                       | L: LD5 - 250.0                                           | MG/KG                                                |                                              | •                                             |
| TREATMENT                       | : IN VIVO, ORA                                           | . SUBACUTE                                           | DATE STARTED:                                | OCTOBER 6, 1972                               |
| ANIMAL<br>NUMBER                | A<br>RAW CFU X<br>10E7/0.6ML                             | B TOTAL CFU X 10E8/1.0mL                             | C<br>TOTAL NO.<br>MUTANTS X<br>10E0/1.0ML    | D<br>MUTATION<br>FRE (C/R)<br>X 10E-8         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 21.40<br>13.50<br>41.70<br>52.30<br>7.20<br>6.80<br>7.70 | 3.57<br>2.25<br>6.95<br>8.67<br>1.20<br>1.13<br>1.26 | 2.00<br>1.00<br>5.00<br>4.00<br>1.00<br>1.00 | •56<br>•44<br>•72<br>•46<br>•83<br>•83<br>•83 |
| NO. OF CU                       | IMALS EQUALS<br>HTAMINATED EQUA<br>OUT OF RANGE E        | 7<br>NLS 1<br>IQUALS 2                               |                                              |                                               |
| ,                               | MEAN<br>RANGE                                            | COL. 3<br>(X 10£3)<br>3.58<br>7.53                   | COL. C<br>(X 10E0)<br>2.14<br>4.00           | COL. D<br>(X 10E-8)<br>.67<br>.44             |

8.67 1.13 5.00 1.00 .88 .44

MAX

NO OUTLIERS

STOP

COMPOUND: FDA 71-45 ORGANISM: SALMONELLA G-46

DOSE LEVEL: NEGATIVE CONTROL - SALINE

TREATMENT: IN VIVO, ORAL, ACUTE DATE STARTED: SEPTEMBER 22, 1972

|                  | A                       | В                         | C<br>Total No.          | D<br>MOTATION        |   |
|------------------|-------------------------|---------------------------|-------------------------|----------------------|---|
| ANIMAL<br>NUMBER | RAW CFU X<br>10E7/0.6ML | TOTAL CFU X<br>10E8/1.0%L | MUTANTS X<br>10E0/1.0ML | FRE (C/8)<br>X 10E-8 |   |
| 1                | 34.00                   | 5.67                      | 3.00                    | •53                  |   |
| 2                | <b>50.</b> 90           | 8.48                      | 4.00                    | .47                  |   |
| 3                | 34.00                   | 5.67                      | 4.00                    | .71                  |   |
|                  | 5 <b>8.</b> 60          | 9.67                      | 4.00                    | .41                  |   |
| 5                | <b>31.</b> 50           | 5.25                      | 6.00                    | 1.14                 | * |
| 5                | 34.70                   | 5.78                      | 3.00                    | •52                  |   |
| 7                | 54.20                   | 9.63                      | 6.00                    | •66                  |   |

TOTAL CFU CUT OF RANGE EQUALS 2
SAMPLES WITH ZERO MUTANTS EQUAL 1

-STOP

| •     | COL. B   | COL. C   | COL. D          |
|-------|----------|----------|-----------------|
|       | (X 10E3) | (X 10E0) | (X 10E-8)       |
| MEAN  | 7•08     | 4.29     | •6 <sup>4</sup> |
| RANGE | 4.42     | 3.00     | •73             |
| MAX   | 9.67     | 6.00     | 1.10            |
| MIN   | 5.25     | 3.00     | .41             |

#### \* SUMMARY WITH OUTLIERS REMOVED

|       | COL. E       | COL. C   | COL. D    |
|-------|--------------|----------|-----------|
|       | (X 10E8)     | (X 10E0) | (X 10E-8) |
| MEAN  | <b>7.</b> 38 | 4.00     | •55       |
| RANGE | 4.00         | 3.00     | •29       |
| MAX   | 9.67         | 5.00     | •71       |
| MIN   | 5.67         | 3.00     | •41       |

| COMPOUND: | FDA | 71-46 | ORGANISM: SALMONELLA | G=46 |
|-----------|-----|-------|----------------------|------|
|           |     |       |                      |      |

DOSE LEVEL: POSITIVE CONTROL - DMN - 100 MG/KG

TREATMENT: IN VIVO, ORAL, ACUTE DATE STARTED: SEPTEMBER 22, 1972

|           | Α                | В           | C          | D         |   |
|-----------|------------------|-------------|------------|-----------|---|
|           |                  |             | TOTAL NO.  | MOITATION |   |
| ANIMAL    | RAW CFU X        | TOTAL CFU X | MUTANTS X  | FRE (C/8) |   |
| MUMBER    | 10E7/0.6ML       | 10E8/1.0mL  | 10E0/1.0ML | X 10E-8   |   |
| 1         | 19.10            | 3.18        | 91.00      | 28.59     | * |
| 2<br>3    | 5 <b>7.</b> 70   | 9.62        | 97.00      | 10.09     | • |
| 3         | 59.10            | 9.85        | 62.00      | 6.29      |   |
| 4         | <b>55.</b> 40    | 9.23        | 108.00     | 11.70     |   |
| 5         | <b>23.</b> 50    | 3.92        | 64.00      | 16.34     |   |
| 6         | 44.50            | 7.48        | 78.00      | 10.42     |   |
| 7         | 38.00            | 6.33        | 110.00     | 17.37     |   |
| NO. OF AL | IMALS EQUALS     | 7 .         |            |           |   |
|           | AD ANIMALS EQUAL | LS 1        |            |           |   |
|           | STAMPHATE EATE   |             |            |           |   |

TOTAL CFU OUT OF RINGE EQUALS 1 HO. OF CONTAMINATED EQUALS

|       | COL. 3           | COL. C   | COL. D    |
|-------|------------------|----------|-----------|
|       | (X <b>10</b> E8) | (X 10E0) | (X 10E-8) |
| MEAN  | <b>7.</b> 09     | 87.14    | 14.40     |
| RANGE | 6.67             | 48.00    | 22.29     |
| MAX   | <b>9.</b> 35     | 110.00   | 28.59     |
| MIN   | <b>3.1</b> 8     | 62.00    | 6.29      |

### \* SUMMARY WITH OUTLIERS REMOVED

|       | COL. B       | COL. C   | COL. D    |
|-------|--------------|----------|-----------|
|       | (X 10E8)     | (X 10E0) | (X 10E-8) |
| MEAN  | 7.74         | 86.50    | 12.03     |
| RANGE | <b>5.</b> 93 | 48.00    | 11.07     |
| MAX   | 9•85         | 110.00   | 17.37     |
| MIN   | 3.92         | 62.00    | 6.29      |

COMPOUND: FDA 71-46 ORGANISM: SALMONELLA 5-6.

DOSE LEVEL: LOW - 2.50 MG/KG

TREATMENT: IN VIVO, ORAL, ACUTE DATE STARTED: SEPTEMBER 22, 1972

| ANIMAL<br>NUMBER                | A<br>RAW CFU X<br>10E7/0.6ML                               | B TOTAL CFU X 10E8/1.0mL                             | C TOTAL NO. MUTANTS X 10E0/1.0ML                     | D<br>MUTATION<br>FRE (C/5)<br>X 10E-8           |
|---------------------------------|------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 43.00<br>55.90<br>25.40<br>9.90<br>34.10<br>58.00<br>34.10 | 7.17<br>9.32<br>4.23<br>1.65<br>5.68<br>9.67<br>5.68 | 2.00<br>5.00<br>4.00<br>2.00<br>6.00<br>3.00<br>5.00 | .28<br>.54<br>.94<br>1.21<br>1.06<br>.31<br>.83 |
| NO. OF CO                       | IMALS EQUALS<br>NTAMINATEL EQUA<br>OUT OF RANGE E          |                                                      | COL. C<br>(X 10E0)                                   | COL. 0<br>(x 10E-8)                             |
| HO OUTLIE                       | MEAN<br>RANGE<br>MAX<br>MIN<br>RS                          | 6.20<br>8.02<br>9.67<br>1.65                         | 3.86<br>4.00<br>6.00<br>2.00                         | •75<br>•93<br>1•21<br>•28                       |

26

COMPOUND: FDA 71-45

ORGANISM: SALMONELLA G-46

DOSE LEVEL: INTERMEDIATE - 25.0 MG/KG

TREATMENT: IN VIVO, ORAL, ACUTE DATE STARTED: SEPTEMBER 22, 1972

| ANIMAL<br>NUMBER                     | A<br>RAW CFU X<br>10E7/0.6ML                                         | B<br>TOTAL CFU X<br>10E8/1.0ML                               | C<br>TOTAL NO.<br>MUTANTS X<br>10E0/1.0ML                     | D<br>MUTATION<br>FRE (C/2)<br>X 10E-8                     |
|--------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 16.10<br>58.40<br>26.70<br>14.10<br>20.90<br>30.00<br>15.20<br>58.60 | 2.68<br>9.73<br>4.45<br>2.35<br>3.48<br>5.00<br>2.53<br>9.77 | 3.00<br>13.00<br>2.00<br>9.00<br>3.00<br>6.00<br>8.00<br>5.00 | 1.12<br>1.34<br>.45<br>3.83<br>.85<br>1.29<br>3.16<br>.51 |
| TOTAL CFU                            | IMALS EQUALS<br>OUT OF RANGE E                                       | 8<br>@UALS 2                                                 |                                                               |                                                           |
| NO OUTLIER                           | MEAN<br>RANGE<br>MAX<br>MIN                                          | COL. 3<br>(X 10E8)<br>5.00<br>7.42<br>9.77<br>2.35           | COL. C<br>(X 10E0)<br>6.13<br>11.00<br>13.00<br>2.00          | COL. D<br>(X 10E-9)<br>1.56<br>3.39<br>3.83<br>.45        |

RO OUTLIERS

COMPOUND: FDA 71-46 ORGANISM: SALMONELLA 6-46

OOSE LEVEL: LD5 - 250.0 MG/KG

TREATMENT: IN VIVO, ORAL, ACUTE DATE STARTED: SEPTEMBER 22, 1972

|                  | Α                       | В                         | С                                    | D                                |
|------------------|-------------------------|---------------------------|--------------------------------------|----------------------------------|
| ANIMAL<br>MUMBER | RAW CFU X<br>10E7/0.6ML | TOTAL CFU X<br>10E8/1.0%L | TOTAL NO.<br>MUTANTS X<br>10E0/1.0ML | MUTATION<br>FRE (C/R)<br>X 10E-8 |
| 1                | 35.20                   | 5.87                      | 7.00                                 | 1 10                             |
| 2                | 18.30                   | 3.05                      | 2.00                                 | 1.19<br>.66                      |
| 3                | 17.10                   | 2.85                      | 3.00                                 | 1.05                             |
| L;               | 26.70                   | 4.45                      | 6.00                                 | 1.35                             |
| 5                | <b>31.</b> 80           | 5.30                      | 2.00                                 | 38                               |
| 6                | 17.40                   | 2.90                      | 3.00                                 | 1.03                             |
| 7                | 17.10                   | 2.35                      | 11.00                                | 3•86 <b>*</b>                    |
| 3                | <b>30.</b> 70           | 5.12                      | 7.00                                 | 1.37                             |

NO. OF ANIMALS EQUALS 8
TOTAL CFU OUT OF R MGE EQUALS 2

|       | COL. ::<br>(X 1023) | CGL. C<br>(X 10E0) | COL. D<br>(x 10E-8) |
|-------|---------------------|--------------------|---------------------|
| MEAN  | 4.05                | 5.13               | 1.36                |
| RANGE | 3.02                | 9.00               | 3.48                |
| MAX   | 5.87                | 11.00              | <b>3.</b> 86        |
| MIN   | 2.85                | 2.00               | • <b>3</b> .9       |

# \* SUMMARY WITH OUTLIERS REMOVED

|       | COL. B   | COL. C   | CoL. D    |
|-------|----------|----------|-----------|
|       | (X 10E8) | (X 10E0) | (X 10E-8) |
| MEAN  | 4.22     | 4.29     | 1.00      |
| RANGE | 3.02     | 5.00     | • 99      |
| MAX   | 5.87     | 7.00     | 1.37      |
| MIN   | 2.85     | 2.00     | •38       |

COMPOUND: FDA 71-46 ORGANISM: SALMONELLA G-06

DOSE LEVEL: LOW - 2.50 MG/KG

TREATMENT: IN VIVO, ORAL, SUBACUTE DATE STARTED: SEPTEMBER 22, 1972

| ANIMAL<br>NUMBER | A<br>RAW CFU X<br>10E7/0.6ML                                | B<br>TOTAL CFU X<br>10E8/1.0ML                       | C<br>TOTAL NO.<br>MUTANTS X<br>10E0/1.0ML            | D<br>MUTATION<br>FRE (C/3)<br>X 10E-8   |
|------------------|-------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------|
| 1234567          | 39.40<br>42.70<br>42.30<br>42.00<br>19.70<br>53.90<br>30.00 | 6.57<br>7.12<br>7.05<br>7.00<br>3.28<br>8.98<br>5.00 | 4.00<br>7.00<br>5.00<br>9.00<br>2.00<br>5.00<br>7.00 | .61<br>.98<br>.71<br>1.29<br>.61<br>.56 |
| NO. OF CO        | IMALS EQUALS<br>NTAMINATED EQUA<br>OUT OF RANGE E           | 7<br>SLS 2<br>GUALS 1                                |                                                      | •                                       |
|                  | •                                                           | COL. D                                               | COL. C                                               | COL - D                                 |

|             | MEAN<br>RANGE<br>MAX | (X 10E5).<br>6.43<br>5.70 | COL. C<br>(X 10E0)<br>5.57<br>7.00 | CCL. D<br>(X 10E-3)<br>.88 |
|-------------|----------------------|---------------------------|------------------------------------|----------------------------|
| IO OUTLIERS | MAX                  | 8•98                      | 9.00                               | 1.40                       |
|             | MIN                  | <b>3•</b> 28              | 2.00                               | •56                        |

STUP

CO POUND: FUA 71-46 ORGANISM: SALMONELLA G-45

DOSE LEVEL: INTERMEDIATE - 25.0 MG/KG

TREATMENT: IN VIVO, ORAL, SUBACUTE DATE STARTED: SEPTEMBER 22, 1972

|                  | Α                                | В                         | С                                    | D                                |
|------------------|----------------------------------|---------------------------|--------------------------------------|----------------------------------|
| ANIMAL<br>MUMBER | RAW CFU X<br>10E <b>7/0.</b> 5ML | TOTAL CFU X<br>10E8/1.00L | TOTAL NO.<br>MUTANTS X<br>10E0/1.0ML | MUTATION<br>FRE (C/A)<br>X 10E-8 |
| i.               | 39.70                            | 6.62                      | 5.00                                 | <b>.7</b> 5                      |
| 2 3              | <b>54.</b> 90<br><b>19.</b> 30   | 9.15                      | 4.00                                 | • 44                             |
| 4                | <b>39.</b> 50                    | 3∙22<br>6∙53              | 4.00                                 | 1.24                             |
| 5                | 23.30                            | <b>3.</b> 88              | 2.00<br>3.00                         | •30<br>•77                       |
| 9                | 39.40                            | 6.57                      | 3.00                                 | .46                              |
| 7<br>8           | 25.00                            | 4.17                      | 1.00                                 | .24                              |
| O                | <b>27.</b> 30                    | 4.55                      | 2.00                                 | • 44                             |

HO. OF ANIMALS EQUALS 8
TOTAL CFU OUT OF RANGE EQUALS 2

|       | COL. J<br>(გ <b>1</b> 028) | COL. C<br>(X 10E0) | COL. D    |
|-------|----------------------------|--------------------|-----------|
| MEAN  |                            |                    | AV TOE-SY |
|       | <b>5.</b> 59               | 3.00               | •58       |
| RANGE | <b>5.</b> 93               | 4.00               | 1.00      |
| MAX   | 9.15                       | 5.00               | 1.24      |
| MIN   | 3.22                       | 1.00               | .24       |

## \* SUMMARY WITH OUTLIERS REMOVED

|   | MEAN<br>RANGE<br>MAX | COL. 8<br>(X 10E8)<br>5.93<br>5.27<br>9.15 | COL. C<br>(X 10E0)<br>2.86<br>4.00<br>5.00 | COL. D<br>(X 10E-8)<br>.49<br>.53 |
|---|----------------------|--------------------------------------------|--------------------------------------------|-----------------------------------|
| ^ | MIN                  | 3.83                                       | 1.00                                       | -24                               |

COMPOUND: FDA 71-46 ORGANISM: SALMONELLA G-46

DOSE LEVEL: LD5 - 250.0 MG/KG

TREATMENT: IN VIVO, ORAL, SUBACUTE DATE STARTED: SEPTEMBER 22, 1972

| ANIMAL<br>NUMBER                | A<br>RAW CFU X<br>10E7/0.6ML                                | B<br>TOTAL CFU X<br>10E8/1.0/4L                      | C<br>TOTAL NO.<br>MUTANTS X<br>10E0/1.0ML            | D<br>MUTATION<br>FRE (C/B)<br>X 10E-8     |
|---------------------------------|-------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 36.40<br>50.20<br>25.10<br>29.10<br>33.70<br>55.70<br>43.20 | 6.07<br>8.37<br>4.18<br>4.85<br>5.62<br>9.28<br>7.20 | 4.00<br>6.00<br>3.00<br>5.00<br>4.00<br>2.00<br>6.00 | .66<br>.72<br>.72<br>1.03<br>.71<br>.22 * |

NO. OF ANIMALS EQUALS 7
TOTAL CFU OUT OF RANGE EQUALS 2
SAMPLES WITH ZERO MUTANTS EQUAL 1

| MEAN<br>RANGE<br>MAX<br>MIN | COL. B<br>(X 10E8)<br>6.51<br>5.10<br>9.28<br>4.18 | COL. C<br>(X 10E0)<br>4.29<br>4.00<br>6.00<br>2.00 | COL. D<br>(X 10E-8)<br>.70<br>.82<br>1.03 |
|-----------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|
|-----------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|

# \* SUMMARY WITH OUTLIERS REMOVED

| MEAN<br>RANGE<br>MAX<br>MIN | COL. B<br>(X 10E8)<br>6.05<br>4.18<br>8.37<br>4.18 | COL. C<br>(X 10E0)<br>4.67<br>3.00<br>6.00<br>3.00 | COL. D<br>(X 10E-8)<br>.78<br>.37<br>1.03<br>.66 |
|-----------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|
|-----------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|

| COMPOUND: F | FUA | 71-46 | ORGANISM: | SACCHAROMYCES | D-3 |
|-------------|-----|-------|-----------|---------------|-----|
|             |     |       |           | .3            |     |

DOSE LEVEL: NEGATIVE CONTROL - SALINE

TREATMENT: IN VIVO, ORAL, ACUTE DATE STARTED: SEPTEMBER 1, 1972

|        | A          | B<br>TOTAL CFU | C                     | D                        |
|--------|------------|----------------|-----------------------|--------------------------|
| ANIMAL | RAW CFU X  | SCREENED X     | TOTAL<br>RECOMBINANTS | RECOMB/CFU<br>SCREENED X |
| MUMBER | 10E5/1.0ML | 10E5/1.00L     | /1.6%L                | 10E-5                    |
| Ĺ      | 786.00     | •79            | 4.00                  | 5.09                     |
| 2      | 672.00     | •67            | 1.00                  | 1.49                     |
| 3      | 681.00     | •68            | 2.00                  | 2.94                     |
| 4      | 732.00     | <b>.7</b> 3    | 2.00                  | 2.73                     |
| 5      | 562.00     | • 56           | 2.00                  | 3.56                     |
| 6      | 212.00     | .21            | Ű.                    | 0.                       |
| 7      | 232.00     | •23            | . 0.                  | ñ                        |
| 8      | 844.00     | •84            | 2.00                  | 2.37                     |
| TOTAL  |            | 4.72           | 13.00                 | ı                        |

NO. OF AMERICALS EQUALS 8 TOTAL SCREENED OUT OF RANGE EQUALS 1

MEAN C/MEAN B = 2.75

|             |       | COL. E<br>(X 10E5) | CCL. C<br>(X 10E0) | COL. D (X 10E-5) |
|-------------|-------|--------------------|--------------------|------------------|
|             | MEAN  | •59                | 1.63               | 2.27             |
|             | RANGE | •63                | 4.00               | 5.09             |
|             | MAX   | • 84               | 4.00               | 5.09             |
|             | MIN   | •21                | 0 •                | 0.               |
| NO OUTLIERS |       |                    |                    |                  |

COMPOUND: FDA 71-46 ORGANISM: SACCHAROMYCES D-3

LOSE LEVEL: POSITIVE CONTROL - EMS - 350 MG/KG I.M.

TREATMENT: IN VIVO, ORAL, ACUTE DATE STARTED: SEPTEMBER 1, 1973

|                                                | Α                                                                                      | 8                                                    | С                                                                                   | D                                                                                    |  |
|------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| ANIMAL<br>NUMBER                               | RAW CFU X<br>10E5/1.GML                                                                | TOTAL CFU<br>SCREENED X<br>10E5/1.0ML                | TOTAL RECOMBINANTS /1.GML                                                           | RECOMB/CFU<br>SCREEMED X<br>10E-5                                                    |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0 | 681.00<br>647.00<br>292.00<br>367.00<br>562.00<br>524.00<br>871.00<br>211.00<br>573.00 | .68<br>.65<br>.29<br>.37<br>.56<br>.52<br>.87<br>.21 | 4.00<br>18.00<br>19.00<br>12.00<br>14.00<br>22.00<br>16.00<br>11.00<br>8.00<br>3.00 | 5.87<br>27.82<br>65.07<br>32.70<br>24.91<br>41.98<br>18.37<br>52.13<br>13.96<br>3.88 |  |
| TOTAL                                          |                                                                                        | 5.50                                                 | 127.00                                                                              |                                                                                      |  |
| JO. OF AN                                      | IMALS EQUALS                                                                           | 10                                                   |                                                                                     |                                                                                      |  |
| HEAN C/ME                                      | AN B = 23                                                                              | 3.09                                                 |                                                                                     |                                                                                      |  |
| NO OUTS IS                                     | MEAN<br>RANGL<br>MAX<br>MIN                                                            | COL. 5<br>(X 1025)<br>.55<br>.66<br>.87              | COL. C<br>(X 10E0)<br>12.70<br>19.00<br>22.00<br>3.00                               | CCL. D<br>(X 10E-5)<br>28.67<br>61.19<br>65.07<br>3.88                               |  |

| CO POUND: | FDA | 71-46 | ORGANISM:      | SACCHAROMYCES    | D-7                |
|-----------|-----|-------|----------------|------------------|--------------------|
|           |     |       | A1164114 21114 | - JACCHANCMICE ~ | 3 / <b>***</b> **. |

DOSE LEVEL: LOW - 2.50 NG/KG

TREATMENT: IN VIVO, ORAL, ACUTE DATE STARTED: SEPTEMBER 1, 1972

| ANIMAL<br>NUMBER | A<br>RAW CFU X<br>1085/1.0ML                                                 | B<br>TOTAL CFU<br>SCREENED X<br>10E5/1.0ML    | C<br>TOTAL<br>RECOMBINANTS<br>/1.0ML                          | D<br>RECOMB/CFU<br>SCREENED X<br>10E-5                          |
|------------------|------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|
| 12345678         | 613.00<br>750.00<br>571.00<br>710.80<br>675.00<br>511.00<br>407.00<br>606.60 | .61<br>.75<br>.57<br>.71<br>.67<br>.51<br>.41 | 4.00<br>10.00<br>6.00<br>4.00<br>7.00<br>2.00<br>1.00<br>6.00 | 6.53<br>13.33<br>10.51<br>5.63<br>10.37<br>3.91<br>2.46<br>9.90 |
|                  | HALS EQUALS<br>ENED OUT OF R                                                 | <b>4.8</b> 4                                  | 40.00                                                         | ,                                                               |

MEAN C/MEAN B =

|             | MEAN       | COL. :<br>(X 10E5)<br>.61 | COL. C<br>(X 10E0) | COL. D<br>(X 10E-5) |
|-------------|------------|---------------------------|--------------------|---------------------|
|             | RANGE      | • 34                      | 5.00<br>9.00       | 7.83<br>10.83       |
|             | MAX<br>MIN | •75<br>•41                | 10.00<br>1.00      | 13.33<br>2.46       |
| NO OUTLIFES |            |                           |                    | C 1 7 3             |

COMPCUND: FDA 71-46 ORGANISM: SACCHAROMYCES D-3

DOSE LEVEL: INTERMEDIATE - 25.0 MG/KG

TREATMENT: IN VIVO, ORAL, ACUTE

DATE STARTED: SEPTEMBER 1, 1972

| ANIMAL    | A<br>RAW <b>CF</b> U X<br>1085/1.0ML                               | B<br>TOTAL CFU<br>SCREENED X<br>10E5/1.0ML            | C<br>TOTAL<br>RECOMBINANTS                                   | D<br>RECOMB/CFU<br>SCREENED X                                  |
|-----------|--------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|
|           | TOTO, TOUIT                                                        | TULD/ TOUML                                           | /1.0ML                                                       | 10E-5                                                          |
| 123456789 | 782.00<br>561.00<br>523.00<br>521.00<br>550.00<br>625.00<br>543.00 | •78<br>•56<br>•52<br>•52<br>•55<br>•62<br>•54,<br>•47 | 4.00<br>6.00<br>3.00<br>8.00<br>2.00<br>4.00<br>4.00<br>2.00 | 5.12<br>10.70<br>5.74<br>15.36<br>3.64<br>6.40<br>7.37<br>4.23 |
| ソ         | 525.00                                                             | •52                                                   | 4.00                                                         | 7.62                                                           |
| TOTAL     |                                                                    | 5.10                                                  | 37.00                                                        |                                                                |

NO. OF AMIMALS EQUALS 9
TOTAL SCREENED OUT OF RANGE EQUALS 1

MEAN C/MEAN B =

7.25

| MEAN<br>RANGE<br>MAX | COL. E<br>(X 10E5)<br>.57<br>.31<br>.78 | COL. C<br>(X 10E0)<br>4.11<br>6.00<br>8.00 | COL. D<br>(X 10E-5)<br>7.35<br>11.72<br>15.36 |
|----------------------|-----------------------------------------|--------------------------------------------|-----------------------------------------------|
| MIN                  | •47                                     | 2.00                                       | 3.64                                          |

# \* SUMMARY WITH OUTLIERS REMOVED

MEAN C/MEAN B = 6.33

|            | COL. 3   | COL. C       | COL. D    |
|------------|----------|--------------|-----------|
|            | (X 10E5) | (X 10E0)     | (X 10E-5) |
| MEAN       | •57      | 3.6 <b>3</b> | 6.35      |
| RANGE      | •31      | 4.00         | 7.05      |
| <b>MAX</b> | • 7/3    | 5.00         | 10.70     |
| MIN        | • 47     | 2.00         | 3.64      |

COMPOUND: FDA 71-46 ORGANISM: SACCHAROMYCES D-7

DOSE LEVEL: LD5 - 250.0 MG/KG

TREATMENT: IN VIVO, ORAL, ACUTE DATE STARTED: SEPTEMBER 1, 1972

| ANIMAL<br>WUMBER                | A<br>RAW CFU X<br>1025/1.0ML                             | B<br>TOTAL CFU<br>SCREENED X<br>10E5/1.0ML | C<br>TOTAL<br>RECOMBINANTS<br>/1.0ML         | D RECOMB/CFU SCREENED X 10E-5                          |   |
|---------------------------------|----------------------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------------------|---|
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 737.00<br>560.00<br>471.00<br>618.00<br>543.00<br>570.00 | •74<br>•56<br>•47<br>•62<br>•54<br>•57     | 4.00<br>6.00<br>3.00<br>6.00<br>8.00<br>3.00 | 5.43<br>10.71<br>6.37<br>9.71<br>14.73<br>5.26<br>7.39 | * |
| TOTAL                           |                                                          | 4.04                                       | 34.00                                        |                                                        |   |

NO. OF AMIMALS EQUALS 7
TOTAL SCREENED OUT OF RANGE EQUALS 3

DEAN C/MEAN B = 8.42

|       | COL. 6<br>(x 1055) | COL. C<br>(X 10E0) | COL. D<br>(X 10E-5) |
|-------|--------------------|--------------------|---------------------|
| MEAN  | •58                | 4.86               | 8.52                |
| RANGE | .27                | 5.0 <b>0</b>       | 9.47                |
| MAX   | • 74               | 8.00               | 14.73               |
| MIN   | •47                | 3.00               | 5.26                |

## \* SUMMARY WITH OUTLIERS REMOVED

MEAN C/MEAN B = 7.43

|       | COL. 8   | COL. C   | COL. D    |  |
|-------|----------|----------|-----------|--|
|       | (X 10E5) | (X 10E0) | (X 10E-5) |  |
| MEAN  | •5≥      | 4.33     | 7.48      |  |
| RANGE | •27      | 3.00     | 5.45      |  |
| MAX   | • 7 4    | 6.00     | 10.71     |  |
| MIN   | •47      | 3.00     | 5.26      |  |

STOP

COMPOUND: FDA 71-46 ORGANISM: SACCHAROMYCES D-3

DOSE LEVEL: LOW - 2.50 MG/KG

TREATMENT: IN VIVO, ORAL, SUBACUTE DATE STARTED: SEPTEMBER 1, 1972

| ANIMAL<br>MUMBER | A<br>RAW CFU X<br>10E5/1.GML                                       | B<br>TOTAL CFU<br>SCREENED X<br>10E5/1.0ML    | C<br>TOTAL<br>RECOMBINANTS<br>/1.0ML                   | D<br>RECOMB/CFU<br>SCREENED X<br>10E-5                  |
|------------------|--------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|
| 1234<br>567      | 531.00<br>574.00<br>614.00<br>652.00<br>572.00<br>500.00<br>720.00 | •53<br>•57<br>•61<br>•65<br>•57<br>•50<br>•72 | 10.00<br>4.00<br>11.00<br>4.00<br>6.00<br>2.00<br>3.00 | 18.83<br>6.97<br>17.92<br>6.13<br>10.49<br>4.00<br>4.17 |
| TOTAL            |                                                                    | 4.16                                          | 40.00                                                  |                                                         |
| HO. OF AN        | ALS EQUALS<br>REENED OUT OF RA                                     | 7<br>ANGE EQUALS                              | 3                                                      | •                                                       |
| MEAN C/ME        | AN B =                                                             | 9•61                                          |                                                        |                                                         |

|             | MEAN<br>RANGE | COL. 8<br>(X 10E5)<br>.59<br>.22 | COL. C<br>(X 10E0)<br>5.71<br>9.00 | COL. D<br>(X 10E-5)<br>9.79<br>14.83 |
|-------------|---------------|----------------------------------|------------------------------------|--------------------------------------|
| GO OUTLIERS | MAX           | •72                              | 11.00                              | 18.63                                |
|             | MIN           | •50                              | 2.00                               | 4.00                                 |

| COPPOUND: FDA | 71-46 | ORGANISM: | SACCHAROMYCES | D-3 |
|---------------|-------|-----------|---------------|-----|
|               |       |           | .,            |     |

COSE LEVEL: INTERMEDIATE - 25.0 MG/KG

TREATMENT: IN VIVO, ORAL, SUBACUTE DATE STARTED: SEPTEMBER 1, 1972

|                                 | Α                                                                  | В                                      | C                                                    | D                                                     |    |
|---------------------------------|--------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|-------------------------------------------------------|----|
| ANIMAL<br>NUMBER                | RAW CFU X<br>10E5/1.0ML                                            | TOTAL CFU<br>SCREENED X<br>10E5/1.UML  | TOTAL RECOMBINANTS /1.0ML                            | RECOMB/CFU<br>SCREENED X<br>10E-5                     |    |
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 675.00<br>686.00<br>708.00<br>644.00<br>434.00<br>571.00<br>450.00 | .67<br>.69<br>.71<br>.64<br>.43<br>.57 | 4.00<br>4.00<br>6.00<br>4.00<br>2.00<br>6.00<br>3.00 | 5.93<br>5.83<br>8.47<br>6.21<br>4.61<br>10.51<br>6.67 | γk |
| TOTAL                           |                                                                    | 4.17.                                  | 29.00                                                |                                                       |    |
|                                 | TRALS EQUALS<br>REENED OUT OF R                                    | 7<br>ANGE EQUALS                       | <b>3</b>                                             | •                                                     |    |

MEAN C/MEAN B = 6.96

| MEAN  | COL. E<br>(X 10E5)<br>.60 | COL. C<br>(X 10E0) | COL. D<br>(X 10E-5) |
|-------|---------------------------|--------------------|---------------------|
| RANGE | •30<br>•27                | 4.14<br>4.00       | 6∙ଥ9<br>5•90        |
| MAX   | .71                       | 6.00               | 10.51               |
| MIN   | • 43                      | 2.00               | 4.61                |

# \* SUMMARY WITH OUTLIERS REMOVED

MEAN C/MEAN B = 6.39

|       | COL. B   | CCL. C       | COL. D    |
|-------|----------|--------------|-----------|
|       | (X 10E5) | (X 10E0)     | (X 10E-5) |
| MEAN  | •60      | 3•8 <b>3</b> | 6.29      |
| RANGE | •27      | 4.00         | 3.87      |
| MAX   | .71      | 6.0 <b>0</b> | 8.47      |
| MIN   | • 43     | 2.00         | 4.51      |

| CO POUND: FDA 71-46 | ORGANISM: | SACCHAROMYCES | D-3 |
|---------------------|-----------|---------------|-----|
|                     |           |               |     |

BOSE LEVEL: LD5 - 250.0 MG/KG

TREATMENT: IN VIVO, ORAL, SUBACUTE DATE STARTED: SEPTEMBER 1, 1972

| ANIMAL<br>HUMBER                | A<br>RAW CFU X<br>10E5/1.0ML                                       | B<br>TOTAL CFU<br>SCREENED X<br>10E5/1.0ML | C<br>TOTAL<br>RECOMBINANTS<br>/1.0ML                   | D<br>RECOMB/CFU<br>SCREENED X<br>10E-5                    |
|---------------------------------|--------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 663.00<br>751.00<br>741.00<br>623.00<br>731.00<br>573.00<br>571.00 | .66<br>.75<br>.74<br>.62<br>.73<br>.57     | 10.00<br>10.00<br>8.00<br>4.00<br>4.00<br>7.00<br>8.00 | 15.08<br>13.32<br>10.80<br>6.42<br>5.47<br>12.22<br>14.01 |
| TOTAL                           |                                                                    | 4.65.                                      | 51.00                                                  |                                                           |
| NO. OF ANI                      | NALS EQUALS<br>TENED OUT OF RA                                     | 7<br>ANGE EQUALS                           | 3                                                      |                                                           |

MEAN C/MEAN B = 10.96

|             |       | COL. 설<br>(X 10조5) | COL. C<br>(X 10E0) | COL. D<br>(X 10E+5) |
|-------------|-------|--------------------|--------------------|---------------------|
|             | MEAN  | •66                | 7.29               | 11.64               |
|             | RANGE | •1∂                | 6.00               | 9.61                |
|             | MAX   | •75                | 10.00              | 15.18               |
| NO OUTLIERS | MIN   | •57                | 4.00               | 5.47                |

## Toxicity Data - Test II

Compound FDA 71-46, Sodium Tripolyphosphate, was prepared as a 19.6% (w/v) suspension and administered orally to a group of ten male rats (average body weight 236 grams) at a single dose of  $5000 \, \text{mg/kg}$ .

No signs of toxicity or abnormal behavior were observed in the seven-day observation period. One death occurred on day one. Necropsy revealed a ruptured stomach wall. No other deaths occurred. At termination all animals were killed and on necropsy no gross findings were observed.

The acute oral LD  $_{50}$  for compound FDA 71-46 is considered to be greater than 5000  $\,\mathrm{mg/kg}$  .

TOXICITY DATA SHEETS

CONTRACT FDA 71-268

COMPOUND FDA 71-46

SODIUM TRIPOLYPHOSPHATE

TEST II



## TOXICITY DATA

## CONTRACT FDA 71-268

## COMPOUND FDA 71-46

## SODIUM TRIPOLYPHOSPHATE

Solvent:

0.85% saline

Dosage Form:

Suspension

Animals:

Male rats with an average body weight of 236 grams.

All animals were observed for seven (7) days.

LD<sub>50</sub>:

The  $\mathrm{LD}_{50}$  is greater than 5 grams per kilogram and there

was no abnormal gross pathology on the animals used in

this study.

## 4. Host-Mediated Assay - Test II

The subacute dose levels of 1100 mg/kg and 2500 mg/kg were tested against all three indicator organisms. The results of all tests were negative.

David Brusick

a. HOST-MEDIATED ASSAY SUMMARY SHEETS

CONTRACT FDA 71-268

COMPOUND FDA 71-46

SODIUM TRIPOLYPHOSPHATE

TEST II



# HOST MEDIATED ASSAY SUMMARY SHEET

COMPOUND: FDA 71-46

| COMPOUND: FDA                         | 11-46                     | SALMO                   | \ <b>A</b>                |                          |                            |                  |
|---------------------------------------|---------------------------|-------------------------|---------------------------|--------------------------|----------------------------|------------------|
|                                       | TA153                     | SALMOI<br>30            | G-46                      |                          | SACCHAROMY                 | CES D-3          |
|                                       | MMF<br>(X 10E-8)          | MFT/MFC                 | MMF<br>(X 10E-8)          | MFT/MFC                  | MRF<br>(X 10E-5)           | MRT/MRC          |
| ACUTE<br>NC<br>PC<br>AL<br>AI<br>ALD5 | 3.17<br>64.79<br>0.<br>0. | 20.44<br>0.<br>0.<br>0. | .36<br>187.50<br>0.<br>0. | 520.83<br>0.<br>0.<br>0. | 13.02<br>54.80<br>0.<br>0. | 4.21<br>0.<br>0. |
| SUBACUTE<br>NC<br>SL<br>SI<br>SLD5    | 3.17<br>0.<br>6.38<br>0.  | 0.<br>2.01<br>0.        | .36<br>0.<br>.57<br>.72   | 0.<br>1.58<br>2.00       | 13.02<br>0.<br>12.83<br>0. | 0.<br>.99<br>0.  |
| IN VITRO                              | TA1530                    | G-46                    | % CONC                    | D-3<br>% SURVIVAL        | R X 10E5                   | i                |

NC

PC STOP SRU'S:.5

FMD004 E FO -XQT NOT FOUND

# HOST MEDIATED ASSAY SUMMARY SHEET

| COMPOUND: FDA                | 71-46                     |                         |                        |                   |                            |                  |
|------------------------------|---------------------------|-------------------------|------------------------|-------------------|----------------------------|------------------|
|                              | TA153                     | SALMO1                  | NELLA<br>G-46          |                   | SACCHAROMY                 | CES D-3          |
|                              | 1 A I ) _                 | ,0                      | G=40                   | 1                 |                            |                  |
|                              | MMF<br>(X 10E-8)          | MFT/MFC                 | MMF<br>(X 10E-8)       | MFT/MFC           | MRF<br>(X 10E-5)           | MRT/MRC          |
| ACUTE                        |                           |                         |                        |                   |                            |                  |
| NC<br>PC<br>AL<br>AI<br>ALD5 | 2.27<br>39.17<br>0.<br>0. | 17.26<br>0.<br>0.<br>0. | 1.00<br>0.<br>0.<br>0. | 0.<br>0.<br>0.    | 16.05<br>83.24<br>0.<br>0. | 5.19<br>0.<br>0. |
| SUBACUTE<br>NC<br>SL         | 2.27<br>0.                | 0.                      | 1.00                   |                   | 16.05                      |                  |
| SI<br>SLD5                   | 0.<br>6.68                | 0.<br>2.94              | 0.                     | 0.                | 0.<br>0.<br>16.97          | 0.<br>0.<br>1.06 |
| IN VITRO                     | TA1530                    | G-46                    | % CONC                 | D-3<br>% SURVIVAL | R X 10E                    | 5                |
| NC<br>PC                     |                           |                         | •                      |                   |                            |                  |

STOP SRU'S:.4 b. HOST-MEDIATED ASSAY DATA SHEETS

CONTRACT FDA 71-268

COMPOUND FDA 71-48

SODIUM TRIPOLYPHOSPHATE

TEST II



## HOST ESTATES ASSET HEMBET SHEET

| CO POUND: FOR 71+05 | O'GAVISM: SCLMONFLLA J4183 |
|---------------------|----------------------------|
|---------------------|----------------------------|

COSE LEVEL: ESCITAR CONTROL - SOLER

TRE-THERT: IN VIVO. ORDER FURGOUTE DATE STARTED: HERCH 1.74

|            | 9          | ř               | 0                      | 0                        |
|------------|------------|-----------------|------------------------|--------------------------|
| ANTMAL     | HAY CEU X  | TOTAL CRU X     | TOTAL NO.<br>MUTANTS A | MUTST 10M<br>F 1 m (C/3) |
| M. W. C.   | 1057/0.380 | 1055/1.0~0      | 10%0/1.0Ac             | 106-8                    |
| 1          | 63,45      | } <b>? </b> % • | 30.00                  | <b>?.</b> ⊴3             |
| Š          | 43,7       | 7.28            | 25.00                  | 3,43                     |
| 3          | 61.70      | 10,88           | 39.00                  | 3.79                     |
| L.         | ÷ € 6.     | O 🙀 7 %         | 39.00                  | 4 <b>.</b> 1             |
| <b>=</b> , | 56.00      | Sag ( n         | 2 .00                  | 3,11                     |
| 5          | 45.        | 7 . * *         | 29,00                  | 3,62                     |
| 7          | 49,000     | 9,17            | 25.00                  | 3, 16                    |
| 4          | 77.5       | 18.07           | 34.00                  | 2, 2                     |
| <b>•</b>   | 7          |                 | 20.00                  | 2.1                      |
| 1.7        | 62 N       | 10.48           | 25,00                  |                          |

MO. OF CATCALE COMES 1

|                   | L. t.        | CC mag C | C(L. D    |
|-------------------|--------------|----------|-----------|
|                   | (A 1 % E )   | (⊼ 10±3) | (A 199=*) |
| में अ <b>ने</b> ह | * 3 42 "     | 29.5     | 3.17      |
|                   | # <b># €</b> | 19.0-    | 1.51      |
|                   | 12,97        | 39.00    | 4 . i     |
| #Ng               | 7.2          | 20.00    | 2,40      |

AND OUTLAST

res

| COMPOSINO | <b>CD</b> • |       |                      | ., |      |     |
|-----------|-------------|-------|----------------------|----|------|-----|
| COMPOUND: | ENA         | 11-0- | ORGANISM: SALMONOLLA | Т  | 4153 | } ` |

DOSE LEVEL: POSITIVE CONTROL - DMN - 100 MG/KG

NO OUTLIERS

TREATMENT: IN VIVO. ORAL. ACUTE DATE STARTED: WARCH 1, 1974

|        | Δ                  | В            | C                      | D                    |
|--------|--------------------|--------------|------------------------|----------------------|
| ANIMAL | RAW CFU X          | TOTAL CEU X  | TOTAL NO.<br>Mutants X | MUTATION             |
| NUMBER | 10E7/0.6ML         | 10E8/1.0ML   | 10E0/1.0ML             | F≈E (C/B)<br>× 105⊷8 |
| 1      | 86.00              | 14.33        | 549.00                 | 38.3∩                |
| 2      | <b>43.5</b> 0      | 7.25         | 622.00                 | 85.79                |
|        | 55.00              | 9.17         | 572.00                 | 62.40                |
| 4      | 48.90              | P.15         | 542.00                 | 66.50                |
| 5      | 51.70              | 8.62         | 794.00                 | 92.15                |
| 6      | 44.00              | 7.33         | 281.00                 | 38.32                |
| 7      | 47.10              | 7.85         | 550.00                 | 70.06                |
|        | ANTMALS EQUALS     |              |                        |                      |
| NO. OF | CONTAMINATED EQUAL | <b>♦</b>     |                        | •                    |
|        |                    | COL.         | COL. C                 | cot. D               |
|        |                    | (X 10円4)     | (X 10E0)               | (X 10E-8)            |
|        | MEAN               | 8.96         | 558.57                 | 6 .79                |
|        | ₽ L ^ G E          | <b>7.</b> 48 | 513.00                 | 53.84                |
|        | ₹ <b>4 X</b>       | 14.33        | 794.00                 | 915                  |
| NO OUT | FIN                | <b>7.2</b> 5 | 281.00                 | 33,30                |

STOP

COMPOUND: FDA 71-46

ORGANISM: SALMONELLA TA153

DOSE LEVEL: INTERMEDIATE - 1100 MG/KG

TREATMENT: IN VIVO. ORAL. SUBACUTE DATE STARTED: MARCH 1, 1974

|             | A                              | -8            | c                      | Đ                     |
|-------------|--------------------------------|---------------|------------------------|-----------------------|
| ANIMAL      | RAW CFU X                      | TOTAL CFU X   | TOTAL NO.<br>MUTANTS X | MUTATION<br>FRE (C/B) |
| NUMBER      | 10E7/0.6ML                     | 10E8/1.0ML    | 10E0/1.0ML             | X 10E-8               |
| 1           | <b>39.3</b> 0<br><b>38.</b> 80 | 6.55<br>6.47  | 43.00<br>32.00         | 6.56<br>4.95          |
| 3<br>4      | 95.10<br>34.20                 | 15.35<br>5.70 | 40.00<br>66.00         | 2.52<br>11.58         |
| 5<br>6<br>7 | 38.00<br>35.10                 | 6.33<br>5.85  | 42.00<br>53.00         | 6.63<br>9.06          |
| 8<br>9      | 36.30<br>32.90                 | 6.05<br>5.48  | 43.00<br>25.00         | 7.11<br>4.56          |
|             | 35,20                          | 5.87          | 26.00                  | 4.43                  |
|             | IMALS EQUALS<br>OUT OF RANGE E | QUALS 1       |                        |                       |
|             |                                | •••           |                        |                       |

|                 |       | COL. R   | COL. C   | COL. D    |
|-----------------|-------|----------|----------|-----------|
|                 |       | (X 10E8) | (X 10E0) | (X 10E-8) |
|                 | MEAN  | 7.13     | 41.11    | 6.38      |
|                 | RANGE | 10.37    | 41.00    | 9.06      |
|                 | MAX   | 15.85    | 66.00    | 11.58     |
| 16 611 <b>m</b> | MIN   | 5.48     | 25.00    | 2.52      |
| IO OUTLIFRS     |       |          |          |           |

TOP

COMPOUND: FDA 71-46

ORGANISM: SALMONELLA JA153

DOSE LEVEL: NEGATIVE CONTROL - SALINE.

TREATMENT: IN VIVO, ORAL, SUBACUTE

DATE STARTED: MARCH 15. 1974

|                                      | Α                                                                     | В .                                                                 | С                                                                    | D                                                           |
|--------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|
| ANIMAL<br>NUMBER                     | RAW CFU X<br>10E7/0.6ML                                               | TOTAL CFU X<br>10E8/1.0ML                                           | TOTAL NO.<br>MUTANTS X<br>10E0/1.0ML                                 | MUTATION<br>Fre (C/B)<br>X 105-8                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 113.30<br>61.40<br>47.80<br>95.90<br>90.90<br>83.80<br>68.60<br>68.10 | 18.88<br>10.23<br>7.97<br>15.98<br>15.15<br>13.97<br>11.43<br>11.35 | 24.00<br>22.00<br>24.00<br>16.00<br>38.00<br>30.00<br>32.00<br>37.00 | 1.27<br>2.15<br>3.01<br>1.00<br>2.51<br>2.1<br>2.80<br>3.26 |
|                                      | ANIMALS EQUALS CONTAMINATED EQUALS                                    | s 3                                                                 |                                                                      | •                                                           |
|                                      | MEAN<br>RANGF<br>MAX<br>MIN                                           | COL. A<br>(X 10E8)<br>13.12<br>10.92<br>18.88<br>7.97               | COL. C<br>(X 10E0)<br>27.88<br>22.00<br>38.00                        | COL. D<br>(X 105-8)<br>2.27<br>2.26<br>3.26                 |

STOP

NO OUTLIERS

ALL 10 ANIMALS ARE NOT ACCOUNTED FOR CHECK INPUT

COMPOUND = 71-46 TYPE = 10 FOR . CHECK THEUT

\*\*\* ALL 10 ANIMALS ARE NOT ACCOUNTED FOR ... CHECK TOUT
COMPOUND:= 71-41 TYPE= 10

COMPOUND: FDA 71-46 OPGANISM: SALMONELLA TA153

DOSE LEVEL: POSITIVE CONTROL - DMN - 100 MG/KG

TREATMENT: IN VIVO, ORAL, ACUTE DATE STARTED: MARCH 15, 1974

|        | Δ,             | 8           | С          | D         |     |
|--------|----------------|-------------|------------|-----------|-----|
|        |                |             | TOTAL MO.  | MUTATION  |     |
| ANIMAL | RAM CEU X      | TOTAL CEU X | MUTANTS X  | FRE (C/B) |     |
| NUMBER | 10E7/0.6ML     | 10E8/1.0ML  | 10E0/1.0ML | X 10E-8   |     |
| 1      | 66,60          | 11.10       | 472.00     | 42.52     |     |
| 2      | 6 <b>2.</b> 80 | 10.47       | 332.00     | 31.72     |     |
| 3      | <b>59.</b> 24  | 9.87        | 279.00     | 28.28     |     |
| 4      | 73,40          | 12.23       | 650.00     | 53.13     |     |
| 5      | 56.76          | 9.45        | 289.00     | 30.59     |     |
| 6      | 49.50          | 8.25        | 219.00     | 26,54     |     |
| 7      | 80.50          | 13.42       | 329.00     | 24,52     |     |
| 8      | 50.70          | 8.45        | 320.00     | 37.87     |     |
| 9      | 55.50          | 9.25        | 992.00     |           | . 4 |
| 10     | 68.10          | 11,35       | 106.00     | 9.34      | si. |
| 10     | ნ8•10          | 11,35       | 106.00     | 9.34      |     |

NO. OF ANIMALS EQUALS 19

|         | COL.         | COL. C         | COL. D    |
|---------|--------------|----------------|-----------|
|         | (X 10F%)     | (X 10E0)       | (x 105-8) |
| MEAN    | 10.38        | <b>39</b> 8.87 | 39,17     |
| PANGE   | <b>≈ +17</b> | 886.00         | 97.90     |
| - 1 & X | 13.42        | 992.00         | 107.24    |
| HIN     | 8.25         | 106.00         | 9.34      |

## \* SUMMARY WITH OUTLIERS REMOVED

|        | COL.     | COL. C   | COL. D    |
|--------|----------|----------|-----------|
|        | (X 10≘≈) | (X 10E0) | (X 10E-8) |
| ARAN   | 15.51    | 332.89   | 31.61     |
| R MIGE | 5.17     | 544.00   | 43.79     |
| N A X  | 13,42    | 650.00   | 53.13     |
| MIN    | 8.25     | 106.00   | 9.34      |

COMPOUND: FDA 71-46

ORGANISM: SALMONELLA TA1530

DOSE LEVEL: LD5 - 2500 MG/KG

TREATMENT: IN VIVO, ORAL, SUBACUTE DATE STARTED: MARCH 15, 1974

|                                 | А                                                                       | В                                            | C                                                           | D                                             |
|---------------------------------|-------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|
| ANIMAL<br>NUMBER                | RAW CFU X<br>10E7/0.6ML                                                 | TOTAL CFU X<br>10E8/1.0ML                    | TOTAL NO.<br>Mutants X<br>10e0/1.0ml                        | MUTATION<br>FRE (C/B)<br>X 10E-8              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 41.60<br>58.50<br>39.60<br>35.30<br>30.40<br>48.10<br>52.40             | 6.93<br>9.75<br>6.60<br>5.88<br>5.07<br>8.02 | 45.00<br>33.00<br>40.00<br>72.00<br>50.00<br>33.00<br>40.00 | 6.49<br>3.38<br>6.06<br>12.24<br>9.87<br>4.12 |
| NO. OF                          | ANIMALS EQUALS DEAD ANIMALS EQUAL CONTAMINATED EQUAL FU OUT OF RANGE EQ | s i                                          |                                                             | •                                             |

|             | MEAN<br>RANGE<br>HAX<br>MIN | COL. (X 10E8)<br>7.28<br>4.68<br>9.75<br>5.07 | COL. C<br>(X 10E0)<br>44.71<br>39.00<br>72.00<br>33.00 | COL. D<br>(X 105-8)<br>6.68<br>8.85<br>12.24 |
|-------------|-----------------------------|-----------------------------------------------|--------------------------------------------------------|----------------------------------------------|
| VO OUTLIFES | : T.M.                      | <b>5.</b> 07                                  | <b>33.00</b>                                           | 3.38                                         |

TOP

COMPOUND: FDA 71-46 ORGANISM: SALMONELLA G-46

DOSE LEVEL: NEGATIVE CONTROL - SALINE

TREATMENT: IN VIVO, ORAL, SUBACUTE DATE STARTED: MARCH 21, 1974

| ANIMAL<br>NUMBER                     | RAW CFU X<br>10E7/0.6ML                                                        | B<br>TOTAL CFU X<br>10E8/1.0ML                                            | C<br>TOTAL NO.<br>MUTANTS X<br>10E0/1.0ML                    | D<br>MUTATION<br>FRE (C/B)<br>X 10E-8                |
|--------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 207.00<br>50.90<br>70.90<br>52.30<br>55.30<br>56.90<br>73.00<br>76.30<br>92.20 | 34.50<br>8.48<br>11.82<br>8.72<br>9.22<br>9.48<br>12.17<br>12.72<br>15.37 | 4.00<br>7.00<br>4.00<br>4.00<br>6.00<br>1.00<br>5.00<br>3.00 | .12<br>.83<br>.34<br>.46<br>.65<br>.11<br>.41<br>.24 |
|                                      | IMALS EQUALS<br>OUT OF RANGE E                                                 | 9<br>QUALS 1                                                              | •                                                            |                                                      |
| NO OUTLIER                           | MEAN<br>RANGE<br>MAX<br>MIN                                                    | COL. B (X 10E8) 13.61 26.02 34.50 8.48                                    | COL. C<br>(X 10E0)<br>3.89<br>6.00<br>7.00<br>1.00           | COL. D<br>(X 10E-8)<br>.36<br>.76<br>.83<br>.07      |

STOP SRU'S:.6

COMPOUND: FDA 71-46 ORGANISM: SALMONELLA G-46.

DOSE LEVEL: POSITIVE CONTROL - DMN - 100 MG/KG

TREATMENT: IN VIVO. ORAL. ACUTE DATE STARTED: MARCH 21, 1974

|               | **               | В              | .C         | Đ        |
|---------------|------------------|----------------|------------|----------|
|               |                  |                | TUTAL NO.  | MUTATION |
| ANIMAL        | KAN CFU X        | TOTAL CFU X    | MUTANTS X  | FAE (CB) |
| NUMBER        | 10E7/0, CML      | 1058/1.0ML     | 10EO/1.OML | X 10E-8  |
| 1<br>2        | <b>5</b> 5.90    | 9.32           | 2190.00    | 235.96   |
| 2             | 46.00            | 7.67           | 1519.00    | 198.1    |
| 3<br>4        | 47.80            | 7.97           | 1084.00    | 136.06   |
| 4             | 5⊳. ຂີບ          | 9.73           | 2149.00    | 221.54   |
| 5             | 40.30            | 6.72           | 1134.00    | 168.63   |
| 6<br><b>7</b> | <b>59.</b> 59    | 9.93           | 1764.00    | 177.58   |
|               | 64,20            | 10.70          | 1889.00    | 176.54   |
| 8             | 52.44            | ∫8 <b>.</b> 73 | 1175.00    | 134.54   |
| 9             | 43.90            | 7.32           | 1790.00    | 244,54   |
| 10            | 42.40            | 7.07           | 1287.00    | 182.12   |
| NO. OF AND    | MALS LOUALS      | 1              |            |          |
|               |                  | CUL.           | COL. C     | CAL. D   |
|               |                  | (文 10週~)       | (X 10EÜ)   | (X 108-) |
|               | EAN              | ∂ <b>.</b> 51  | 1598.14    | 187.50   |
|               | 7 4 4 <b>6</b> 5 | 3.96           | 1100.00    | 110.10   |
|               | 1 A. F           | 10.70          | 2190.00    | 244.64   |
|               | FIN              | 5.7 €          | 1084.00    | 154.54   |
| NO QUTLIER    | 45               | •              | e e        | • • • •  |

STOP

COMPOUND: FDA 71-46

ORGANISM: SALMONELLA, G-46

DOSE LEVEL: INTERMEDIATE - 1100 MG/AG

TREATMENT: IN VIVO, ORAL, SUBACUTE

DATE STARTED: MARCH 21, 1974

|                                      | \$                                                                   | В                                                            | C                                                     | Ð                                              |
|--------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|
| ANIMAL<br>NUMBER                     | RAW CFU X<br>10E7/0.CM                                               | TOTAL CFU X                                                  | TOTWL NO.<br>WUTANTS X<br>1000/1.0ML                  | MUTAT ON<br>FAC (C/8)<br>A 10E-8               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 34.60<br>31.30<br>41.10<br>40.50<br>41.49<br>34.80<br>45.70<br>89.00 | 5.77<br>5.22<br>6.85<br>6.75<br>6.9)<br>5.80<br>7.62<br>8.17 | 3.00<br>4.00<br>1.00<br>2.00<br>2.00<br>2.00<br>12.00 | .52<br>.77<br>.15<br>.30<br>.29<br>.34<br>1.58 |

NO. OF ANIMALS EQUELS TOTAL CFU OUT OF RANGE & UALS

|       | CUL.        | COL. C        | Critica D   |
|-------|-------------|---------------|-------------|
| EAN   | (X 1020)    | (X 10±0)      | (ス 102~5)   |
| PARGE | 5.65<br>2.5 | 3.88<br>11.00 | .57         |
| VάX   | 8.17        | 12.00         | 1.43        |
| ·IN   | 5.22        | 1.00          | 1.08<br>.15 |

# THE SUMM MY WITH OUT TERS REMOVED

|            | (X 102a) | COL. C<br>(X.10E0) | COL. D           |
|------------|----------|--------------------|------------------|
| * EAN      | 6.49     | 2.7                | (X 10E-6)<br>•43 |
| SANGE      | 2.5      | 4.00               | .62              |
| WIN<br>WIN | 8.17     | ± • <b>0</b> €     | .77              |
|            | 5.22     | 1.00               | •15              |

STOP

COMPOUND: FD: 71-46

ORGANISM: SALMONELLA G-46

00SE LEVEL: L05 - 2500 MG/KG

TREATMENT: IN VIVO. ORA .. SUBACUTE DATE STARTED: MARCE 21, 1974

|             | 87              | <b>B</b> .   | С                       | D.                   |
|-------------|-----------------|--------------|-------------------------|----------------------|
| ANIMAL      | RAN CEU X       | TOTAL COOL V | TOTAL NO.               | MUTAT ON             |
| NUMPER      | 10E7/0. ML      | TOTAL CFU X  | MUTANTS X<br>10E0/I.OML | #RE (C/8)<br>X 10E+8 |
| 1           | <b>54</b> • 40  | 9.07         | 7.00                    | •77                  |
| 2<br>3<br>4 | 47.50           | 7.92         | 2.00                    | .25                  |
| 3           | <b>65.9</b> 0   | 10.98        | 7.00                    | 64                   |
| 4           | 37.90           | 6.32         | 2.00                    | ,32                  |
| 5           | 46.20           | 7.70         | 5.00                    | .78                  |
| 6<br>7<br>8 | 34.20           | <b>5.7</b> 0 | 6.00                    | 1.00                 |
| (           | 44.00           | 7.33         | 8.00                    | 1.09                 |
|             | 39.00           | 6.50         | 5.00                    | .31                  |
| 9           | 31.20           | 5.2          | 7.00                    | 1.35                 |
| 10          | 35,70           | 5,95         | 4.00                    | .67                  |
| NO. OF ANI  | IMALS ENUALS    | į            |                         |                      |
|             |                 | CUL.         | COL. C                  | COL. D               |
|             | arel            | (% 1000)     | (X 10EC)                | (X 162+3)            |
|             | ZEAN            | 7.27         | 5.17                    | •72                  |
|             | ₹A 1 <b>6</b> ₹ | ÷ 78         | 6.00                    | 1.09                 |
|             | AX<br>TN        | 10.93        | 8 • 0 0                 | 1.5                  |
| NO OUTLIER  |                 | 5,2:         | <b>2.0</b> 0            | • 25                 |

STOP

NO OUTLIERS

COMPOUND: FDA 71-46 ORGANISM: SACCHARUMYCES D-3

DOSE LEVEL: NEGATIVE CONTROL - SALINE

TREATMENT: IN VIVO, ORAL, SUBACUTE DATE STARTED: JUNE 21, 1974

| ANIMAL<br>NUMBER | A<br>RAW CFU X<br>10E5/1.0ML | B<br>TOTAL CFU<br>SCREENED X<br>10ES/1.UML | C TUTAL RECOMBINANTS /1.0ML | D<br>RECUMB/CFU<br>SCREENEU X<br>10E-5 |
|------------------|------------------------------|--------------------------------------------|-----------------------------|----------------------------------------|
| 1                | 1079.00                      | 1.08                                       | 16.00                       | 14 62                                  |
| 2                | 208.00                       | .21                                        | 5.00                        | 14.83<br>24.04                         |
| 3                | 480.00                       | • 4 ô                                      | 5.00                        | 10.42                                  |
| 4                | 527.00                       | •53                                        | 10.00                       | 18.98                                  |
| 5                | 358.00                       | •37                                        | 5.00                        | 13.59                                  |
| 6                | 896.00                       | •90                                        | 6.00                        | 6.70                                   |
| 7                | 744.00                       | •74                                        | 9.00                        | 12.10                                  |
| TOTAL            |                              | 4.30                                       | 56.00                       |                                        |

NO. OF ANIMALS EQUALS 7
NO. OF CONTAMINATED EQUALS 1
TOTAL SCREENED OUT OF RANGE EQUALS 2

MEAN C/MEAN. B = 13.02

|             |       | COL. H   | CÜL. C   | COL. D    |
|-------------|-------|----------|----------|-----------|
|             |       | (X 1065) | (X 10EU) | (X 10E-5) |
|             | MEAN  | •61      | ತ∙00     | 14.38     |
|             | RANGE | • ♂ /    | 11.00    | 1/.34     |
|             | MAA   | 1.08     | 10.00    | 24.04     |
| NO OUTLIEUC | MIN   | •21      | 5.00     | 6.70      |

NO OUTLIERS

SHU'S:.6 !SWITCH IND:SL261 !SAL

COMPOUND: FDA 71-46 ORGANISM: SACCHAROMYCES 0-3

DOSE LEVEL: POSITIVE CONTROL - EMS - 350 MG/KG I.M.

TREATMENT: IN VIVO, UHAL, ACUTE DATE STARTED: JUNE 21, 1974

| ANIMAL<br>NUMBEP | A<br>RAW CFU X<br>10E5/1.0ML | B<br>TOTAL CFU<br>SCREENED X<br>1065/1.0ML | C<br>TOTAL<br>RECOMBINANTS<br>/1.0ML | D<br>RECOMB/CFU<br>SCHEENED X<br>10E-5 |
|------------------|------------------------------|--------------------------------------------|--------------------------------------|----------------------------------------|
| 1                | 309.00                       | •31                                        | 39.00                                | 126.21                                 |
| 2                | 1222.00                      | 1.22                                       | 20.00                                | 16.37                                  |
| 3                | 901.00                       | • 90                                       | 36.00                                | 39.96                                  |
| 4                | 697.00                       | .70                                        | 53.00                                | 76.04                                  |
| · <b>5</b>       | 1181.00                      | 1.18                                       | 48.00                                | 40.64                                  |
| 6                | 801.00                       | • 30                                       | 36.00                                | 44.94                                  |
| 7                | 317.00                       | •32                                        | 44.00                                | 138.00                                 |
| 8                | 941.00                       | •94                                        | 76.00                                | 80.77                                  |
| 9                | 1670.00                      | 1.67                                       | 54.00                                | 32.34                                  |
| 10               | 1104.00                      | 1.10                                       | 95.00                                | 86.05                                  |
| TOTAL            |                              | 9.14                                       | 501.00                               |                                        |

NO. OF ANIMALS EQUALS 10

MEAN C/MEAN B = 54.80

|             |       | COL. e<br>(X 1065) | COL. C<br>(X 10E0) | COL. D<br>(x 10E-5) |
|-------------|-------|--------------------|--------------------|---------------------|
|             | MEAN  | •91                | 50.10              | 68.21               |
|             | RANGE | 1.36               | 75.00              | 122.43              |
|             | MAX   | 1.67               | 95.00              | 138.80              |
| NO OUTLYEDS | MIN   | •31                | 20.00              | 16.37               |

STOP SHU15:.6 'S#ITCH IND:SL267 SAL

COMPOUND: FDA 71-46 ORGANISM: SACCHAROMYCES D-3

DOSE LEVEL: INTERMEDIATE - 1100 MG/KG

TREATMENT: IN VIVO, ORAL, SUBACUTE DATE STARTED: JUNE 21, 1974

| ANIMAL<br>NUMBER | 4<br>RAW CFU X<br>10E5/1.0ML | B<br>TOTAL CFU<br>SCREENED X<br>10E5/1.UML | C<br>TOTAL<br>RECUMBINANTS<br>/1.0ML | D RECOMB/CFU SCHEENED X 10E-5 |
|------------------|------------------------------|--------------------------------------------|--------------------------------------|-------------------------------|
| 1                | 883.00                       | • d8                                       | 2 00                                 |                               |
| Ž                |                              |                                            | 2.00                                 | 2.27                          |
|                  | 449.00                       | • 45                                       | 10.00                                | 22.27                         |
| 3                | 577 <b>.</b> 00              | <b>-</b> 58                                | 15.00                                | 26.00                         |
| 4                | 360.00                       | • 36                                       | 4.00                                 | 11.11                         |
| 5                | 656.00                       | •66                                        | 10.00                                | 15.24                         |
| 6                | 374.00                       | • 57                                       | 8.00                                 | 21.39                         |
| 7                | 831.00                       | •83                                        | 4.00                                 | 4.81                          |
| TOTAL            |                              | 4.13                                       | 53.00                                |                               |

NO. OF ANIMALS EQUALS 7
NO. OF DEAD ANIMALS EQUALS 1
TOTAL SCREENED OUT OF RANGE EQUALS 2

MEAN C/MEAN B = 12.83

|            |       | CUL. b       | COL. C   | COL. D    |
|------------|-------|--------------|----------|-----------|
|            |       | (x 1065)     | (X 10E0) | (X 10E-5) |
|            | MEAN  | •59          | 7.57     | 14.73     |
|            | RANGE | •52          | 13.00    | 23.73     |
|            | мдх   | • 8 <b>6</b> | 15.00    | 26.00     |
| NO OUTUTOR | MIN   | •30          | 2.00     | 2.27      |

NO OUTLIERS STOP

GRU!5:.5

SWITCH INS:SL272

SAL

CO POUND: FD 73-45 JAGANISM: SACCHARGOZCES D-3

DOSE LEVEL: NEGATIVE CONTROL - SALINE

TREATMENT: IN VIVO, ORAC, SUBACUTE DATE STARTED: MAY 5, 1974

| ANTMAL<br>NUMBER | #20 <b>CFU X</b> | B<br>TOTAL CFU<br>OCHEENED A<br>1018/1.0ML | C<br>TOTAL<br>RECO. BINANTS<br>/1.UNL | D<br>RECOMBICEU<br>SCREENED X<br>10%mo |
|------------------|------------------|--------------------------------------------|---------------------------------------|----------------------------------------|
| 1                | 434.00           | • 4 ·                                      | 15.00                                 | 30 <b>,9</b> 9                         |
| 2                | 424.00           | .42                                        | 8.00                                  | 18.87                                  |
| į.               | <b>759.</b> 00   | .70                                        | 11.00                                 | 14.49                                  |
| 44               | 2 <b>95.</b> 00  | ن في في                                    | 3 <b>. 0 0</b>                        | 4.95                                   |
| 5                | 631.00           | ្តំចំនឹ                                    | 8.00                                  | 12,68                                  |
| 5                | 46 <b>1.</b> 99  | .40                                        | 15.00                                 | 31.19                                  |
| 7                | 437.00           | . 44                                       | 11.00                                 | 25.17                                  |
| 8                | 1745.00          | 1.75                                       | 15.00                                 | 8.60                                   |
| 5                | 652.30           | . 05                                       | 13.00                                 | 19,94                                  |
| 10               | <b>655.</b> 00   | •60                                        | 11.00                                 | 16,79                                  |
| TOTAL            |                  | 7.16                                       | 115.00                                |                                        |

NO. OF ANIMALS EQUALS 1

GEAN CIMEAN B = 16. 5

|             |       | CGL. 9<br>(x legs) | COL. C<br>(X. 1080) | COL. D<br>(X 102-5) |
|-------------|-------|--------------------|---------------------|---------------------|
|             | Solv  | • 72               | 11.5                | 15.76               |
|             | - G:  | 1.32               | .00                 | 22.59               |
|             | 1 A 4 | 1.75               | 15.00               | 31,19               |
| NO OUTLESDO | Ĩìvi  | • 42               | 8.00                | 0.60                |

NO OUTLIERS

STIP

COMPOUND: FDA 71-46 ORGANISM: SACCHAROMYCES DE3

DOSE LEVEL: POSITIVE CONTROL -EMS - 350 MG/KG I.M.

TREATMENT: IN VIVO. OHAL. ACUTE DATE STARTED: MAY 3, 1974

| ANIMAL<br>NUMBER | A<br>RAW CFU X<br>10E5/1.0ML | B<br>TOTAL CHU<br>SCREENED X<br>10E5/1.0ML | C<br>TOTAL<br>RECUMBINANTS<br>/1.UML | D<br>RECUMB/CFU<br>SCREENED X<br>10E-5 |
|------------------|------------------------------|--------------------------------------------|--------------------------------------|----------------------------------------|
| 1                | 1056.00                      | 1.06                                       | 73.00                                | 69.13                                  |
| 2                | 579.00                       | •58                                        | 52.00                                | 89.81                                  |
| 3                | 546.00                       | •65                                        | 74.00                                | 114.55                                 |
| 4                | 431.00                       | .43                                        | 44.00                                | 102.09                                 |
| 5                | 993.00                       | • 99                                       | 54.00                                | 54.38                                  |
| 6                | 655.00                       | • 65                                       | 67.00                                | 102.29                                 |
| 7                | 1050.00                      | 1.05                                       | 66.00                                | 62.86                                  |
| ಕ                | 945.00                       | • 94                                       | 73.00                                | 77.25                                  |
| 9                | 805.00                       | .80                                        | 93.00                                | 115.53                                 |
| TOTAL            |                              | 7.16                                       | 576.00                               | •                                      |

NO. OF ANIMALS EQUALS 9
NO. OF CONTAMINATED EQUALS 1

MEAN C/MEAN B = 83.24

|              |       | COL. B   | COL. C   | COL. D    |
|--------------|-------|----------|----------|-----------|
|              |       | (X 10E5) | (X 10E0) | (X 10E-5) |
|              | 1EAN  | • & U    | 66.22    | 87.54     |
|              | RANGE | •62      | 49.00    | 61.15     |
| ħ            | AAX   | 1.06     | 93.00    | 115.53    |
| MO 0071 7500 | 110   | •43      | 44.00    | 54.38     |

NO OUTLIERS

STOP SPUN: .6 SAIT OF INS. KS15

COMPOUND: FDA 71-46 ORGANISM: SACCHAROMYCES D-3

DOSE LEVEL: LD5 - 2500 MG/KG

TREATMENT: IN VIVO, ORAL, SUBACUTE DATE STARTED: MAY 3, 1974

| ANIMAL<br>NUMBER                     | A RAW CFU X 10E5/1.0ML                                                        | B<br>TOTAL CFU<br>SCREENED X<br>10E5/1.0ML     | C<br>TOTAL<br>RECOMBINANTS<br>/1.0ML                               | D<br>RECOMB/CFU<br>SCREENED X<br>10E-5                              |   |
|--------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|---|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 910.00<br>930.00<br>1217.00<br>664.00<br>282.00<br>824.00<br>508.00<br>910.00 | .91<br>.93<br>1.22<br>.66<br>.28<br>.82<br>.51 | 9.00<br>11.00<br>17.00<br>13.00<br>14.00<br>24.00<br>8.00<br>10.00 | 9.89<br>11.83<br>13.97<br>19.58<br>49.65<br>29.13<br>15.75<br>10.99 | × |
| TOTAL                                |                                                                               | 6.24                                           | 106.00                                                             |                                                                     |   |

NO. OF ANIMALS EQUALS 8
NO. OF DEAD ANIMALS EQUALS 1
TOTAL SCREENED OUT OF RANGE EQUALS 1

MEAN C/MEAN B = 16.97

| COL. B   | COL. C                         | COL. D                                                    |
|----------|--------------------------------|-----------------------------------------------------------|
| (X 10E5) | (X 10E0)                       | (X 10E-5)                                                 |
| .78      | 13.25                          | 20.10                                                     |
| .93      | 16.00                          | 39.76                                                     |
| 1.22     | 24.00                          | 49.65                                                     |
| .28      | 8.00                           | 9.89                                                      |
|          | (X 10E5)<br>.78<br>.93<br>1.22 | (X 10E5) (X 10E0)<br>.78 13.25<br>.93 16.00<br>1.22 24.00 |

\* SUMMARY WITH OUTLIERS REMOVED

MEAN C/MEAN B = 15.43

|       | COL. B   | COL. C   | COL. D    |
|-------|----------|----------|-----------|
|       | (X 10E5) | (X 10E0) | (X 10E-5) |
| MEAN  | . 85     | 13.14    | 15.88     |
| RANGE | .71      | 16.00    | 19.24     |
| MAX   | 1.22     | 24.00    | 29.13     |
| MIN   | •51      | 8.00     | 9.89      |

STOP SRU'S:.6

#### 5. Cytogenetics - Test I

#### a. <u>In vivo</u>

#### (1) Acute study

The percentages of breaks observed in the negative control group and in the three compound level groups were within the normal limits of 0-6%. While the LD5 48-hour group exhibited 4% breaks which was higher than any other, it is not considered significant. The positive control group contained 5% cells with severe chromosomal damage (>10 aberrations/cell) in addition to the numerous breaks and reunions shown on the summary sheet. The mitotic indices were within normal limits and in close agreement except for the positive control, which is to be expected as an action of the compound used, i.e., TEM.

#### (2) Subacute study

The percentage of breaks in the negative controls and the three compound dosage levels was essentially similar (2-4%). The LD5 level contained two cells exhibiting dicentric chromosomes. While these are infrequently observed in negative controls they have been observed in the past and the significance of this finding is questionable.

## b. <u>In vitro</u>

The negative controls contained one multipolar cell which is infrequently seen in negative controls. The low and medium levels each contained one cell with an acentric fragment. The positive control contained two cells with "exploded" or pulverized chromosomes in addition to the other aberrations shown on the summary sheet.

CONTRACT FDA 71-268

COMPOUND FDA 71-46

SODIUM TRIPOLYPHOSPHATE

TEST I



SODIUM TRIPOLYPHOSPHATE FDA 71-46 **ACUTE STUDY** METAPHASE SUMMARY SHEET TEST I

| Compound                | Dosage<br>(mg/kg) | <u>Time*</u> | No. of <u>Animals</u> | No. of Cells | Mitotic<br>Index %*** | % Cells<br>with<br>Breaks | % Cells<br>with<br>Reunion | % Cells<br>Other<br>Aber.** | % Cells<br>with <sub>++</sub><br>Aber. |
|-------------------------|-------------------|--------------|-----------------------|--------------|-----------------------|---------------------------|----------------------------|-----------------------------|----------------------------------------|
| Negative Control        | Saline            | 6            | 3                     | 150          | 6                     | 0                         | 0                          | 0                           | 0                                      |
|                         |                   | 24           | 3                     | 150          | 6                     | 0                         | 0                          | 0                           | Ô                                      |
|                         |                   | 48           | 3                     | 150          | 6                     | 2                         | 0                          | Ō                           | 2                                      |
| Usage Level             | 2.5               | 6            | 5                     | 250          | 6                     | 2                         | 0                          | 0                           | 2                                      |
|                         |                   | 24           | 5                     | 250          | 8                     | 2                         | ñ                          | Õ                           | 2                                      |
|                         |                   | 48           | 5                     | 250          | 8<br>5                | 2<br>2                    | Ö                          | ő                           | 2                                      |
| Intermediate Level      | 25.0              | 6            | 5                     | 250          | 9                     | 2                         | 0                          | 0                           | 2                                      |
|                         |                   | 24           | 5                     | 250          | 8                     | ñ                         | ň                          | 0                           | 2                                      |
|                         |                   | 48           | 5                     | 250          | . 6                   | 1                         | 0                          | 0                           | U                                      |
|                         |                   | 10           | J                     | 230          | U                     | i                         | U                          | 0                           | 1                                      |
| LD <sub>5</sub>         | 250.0             | 6            | 5                     | 250          | 7                     | 0' ~                      | 0                          | 0                           | 0                                      |
| -                       |                   | 24           | 5                     | 250          | 7                     | 2                         | ň                          | Õ                           | 2                                      |
|                         |                   | 48           | 5                     | 250          | 6.                    | 4                         | ő                          | .0                          | 4                                      |
| Positive Control<br>TEM | 0.3               | 48           | 5                     | 250          | 3                     | 18                        | 10                         | 6(a)                        | 33                                     |

<sup>\*</sup> Time of kill after injection (hours).
\*\* Cells that have polyploidy (P), pulverization (pp), or greater than 10 aberrations (a).
\*\*\* Percent of cells in mitosis: 500 cells observed/animal.
++ Duplicate aberrations in a single cell will cause this to be a % less than a summation of the % aberration seen.

#### SODIUM TRIPOLYPHOSPHATE FDA 71-46 SUBACUTE STUDY METAPHASE SUMMARY SHEET TEST I

| Compound           | Dosage<br>(mg/kg)* | No. of<br>Animals | No. of<br>Cells | Mitotic<br>Index %*** | % Cells<br>with<br>Breaks | % Cells<br>with<br><u>Reunion</u> | % Cells<br>Other<br>Aber.** | % Cells<br>with<br>Aber. |
|--------------------|--------------------|-------------------|-----------------|-----------------------|---------------------------|-----------------------------------|-----------------------------|--------------------------|
| Negative Control   | Saline             | 3                 | 150             | 10                    | 4                         | 0                                 | 0                           | 4                        |
| Usage Level        | 2.5                | 5                 | 250             | 6                     | 2                         | 0                                 | 0                           | 2                        |
| Intermediate Level | 25.0               | 5                 | 250             | 7                     | 4                         | 0                                 | 0                           | 4                        |
| LD <sub>5</sub>    | 250.0              | 5                 | 250             | 8                     | 3                         | 1                                 | 0                           | 4                        |

<sup>\*</sup> Dosage 1X/day X 5 days.

<sup>\*\*</sup> Cells that have polyploidy (P), pulverization (pp), fragments (f) or greater than 10 aberrations (a). \*\*\*Percent of cells in mitosis: 500 cells observed/animal.

# SODIUM TRIPOLYPHOSPHATE FDA 71-46 ANAPHASE SUMMARY SHEET TEST I

| Compound                | Dosage<br>(mcg/ml) | Mitotic<br><u>Index**</u> | No. of<br>Cells | % Cells with Acentric Frag. | % Cells<br>with<br>Bridges | % Multipolar<br>Cells | % Cells<br>Other<br>Aber.* | % Cells<br>with<br>Aber. |
|-------------------------|--------------------|---------------------------|-----------------|-----------------------------|----------------------------|-----------------------|----------------------------|--------------------------|
| Low Level               | 0.1                | 4                         | 100             | 1                           | 0                          | 0                     | 0                          | 1                        |
| Medium Level            | 1.0                | 4                         | 100             | 1                           | 0                          | 0                     | 0                          | 1                        |
| High Level              | 10.0               | 4                         | 100             | 0                           | 0                          | 0                     | 0                          | 0                        |
| Negative Control        | Saline             | 5                         | 100             | 0 .                         | 0                          | 1                     | 0                          | 1                        |
| Positive Control<br>TEM | 0.1                | 3                         | 100             | 8                           | 4                          | 2                     | 2(pp)                      | 16                       |

<sup>\*</sup> Cells that have polyploidy (P), pulverization (pp), or greater than 10 aberrations (a). \*\* Percent of cells in mitosis: 200 cells observed/dose level.

<sup>++</sup> Duplicate aberrations in a single cell will cause this to be a % less than a summation of the % aberration seen.

# 6. Cytogenetics - Test II

Compound FDA 71-46, Sodium Tripolyphosphate, was administered to male rats with an average body weight of 300-350 grams. In the acute study (single dose) 2500 mg/kg and in the subacute study (five doses) 1100 mg/kg dose levels were employed. Metaphase chromosome spreads were prepared from the bone marrow cells of these animals and scored for chromosomal aberrations. Neither the variety nor the number of these aberrations differed significantly from the negative controls; hence, compound FDA 71-46, Sodium Tripolyphosphate, can be considered non-mutagenic as measured by the cytogenetic test.



CYTOGENETIC SUMMARY SHEETS

CONTRACT FDA 71-268

COMPOUND FDA 71-46

SODIUM TRIPOLYPHOSPHATE

TEST II



## SODIUM TRIPOLYPHOSPHATE FDA 71-46 ACUTE STUDY METAPHASE SUMMARY SHEET TEST II

| Compound                | Dosage<br>(mg/kg) | <u>Time*</u>                 | No. of Animals | No. of<br>Cells   | Mitotic<br>Index %   | No. of<br>Cells w/<br>Breaks** | No. of<br>Cells w/<br>Reunion** | No. of Cells<br>With Other<br>Aberrations** | No. of<br>Cells w/<br>Aber.** |
|-------------------------|-------------------|------------------------------|----------------|-------------------|----------------------|--------------------------------|---------------------------------|---------------------------------------------|-------------------------------|
| High Level              | 2,500             | 6 Hrs.<br>24 Hrs.<br>48 Hrs. |                | 250<br>228<br>250 | 4.10<br>2.51<br>4.96 | 0<br>1(0.44)<br>0              | 0<br>0<br>1(0.4)                | 0<br>lpp(0.44)<br>lf(0.4)                   | 0<br>2(0.88)<br>2(0.80)       |
| Negative Control        | Saline            | 6 Hrs.<br>24 Hrs.<br>48 Hrs. | 3<br>3<br>3    | 150<br>150<br>150 | 5.07<br>4.20<br>5.13 | 1(0.66)<br>0<br>0              | 0 ·<br>0<br>0                   | lf(0.66)<br>lpp(0.66)<br>lf(0.66)           | 1(0.66)<br>1(0.66)<br>1(0.66) |
| Positive Control<br>TEM | 0.3               | 24 Hrs.                      | 5              | 250               | 2.92                 | 17(6.8)                        | 25(10.0)                        | >19(7.6)<br>22f(8.8)                        | 68(27.2)                      |

<sup>\*</sup> Time of kill after dosing.
\*\* Numbers in ( ) are percent aberrations per total cells counted.
+ Symbols: > = greater than 10 aberrations per cell; f = fragments; pp = polyploid; and pu = pulverization.
++ Based on a count of at least 500 cells per animal.

# SODIUM TRIPOLYPHOSPHATE FDA 71-46 SUBACUTE STUDY METAPHASE SUMMARY SHEET TEST II

| Compound         | Dosage<br>(mg/kg) | No. of<br><u>Animals</u> | No. of<br>Cells | Mitotic<br>Index % | No. of<br>Cells w/<br>Breaks** | No. of<br>Cells w/<br>Reunion** | No. of<br>Cells w/<br>Other Aber.** | No. of<br>Cells w/<br>Aber.** |
|------------------|-------------------|--------------------------|-----------------|--------------------|--------------------------------|---------------------------------|-------------------------------------|-------------------------------|
| High Level       | 1,100             | 5                        | 250             | 5.40               | 0                              | 0                               | 1f(0.4)<br>1p(0.4)                  | 2(0.80)                       |
| Negative Control | Saline            | 3                        | 150             | 7.67               | 0                              | 0                               | lf(0.66)                            | 1(0.66)                       |

<sup>\*\*</sup> Numbers in ( ) are percent aberrations per total cells counted.
++ Based on a count of at least 500 cells per animal.
+ Symbols: > = greater than 10 aberrations per cell; f = fragments, pp = polyploid; and pu = pulverization.

# 7. Dominant Lethal Study - Test I

# a. Acute study

Significant, dose-related, decreases in average corpora <u>lutea</u> and preimplantation losses were seen in the experimental groups at weeks 4 and 5. Average resorptions showed significant, dose-related, increases in the experimental groups at weeks 3 and 6.

# b. Subacute study

Significant, dose-related, decreases in average implantations and <u>corpora lutea</u> were seen at week 6. Significant increases in average resorptions were also seen at week 6.



# c. DOMINANT LETHAL ASSAY SUMMARY SHEETS CONTRACT FDA 71-268 COMPOUND FDA 71-46 SODIUM TRIPOLYPHOSPHATE

TEST I

(Through error the computer had been programmed so that a double rounding off of numbers occurred at print out. In no way does this alter the statistics which are calculated on the full unrounded numbers.)



TABLE I
COMPOUND 46 STUDY ACUTE

#### FERTILITY INDEX

| OG<br>OSE | ARITH<br>DOSE | WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL<br>2.500 Mg/Kg | DOSE LEVEL 25.000 MG/KG | DOSE LEVEL 250.000 MG/KG | POSITIVE<br>CONTROL |
|-----------|---------------|------|-----------------------|---------------------|---------------------------|-------------------------|--------------------------|---------------------|
|           |               | 1    | 83/119=0.70           | 12/20=0.60          | 8/20=0.40                 | 12/20=0.60              | 8/20=0.40                | 10/20=0.50          |
|           |               | 2    | 92/119=0.78           | 11/20=0.55          | 9/20=0.45                 | 17/20=0.85*             | 11/20=0.55               | 4/20=0.20*          |
|           |               | 3    | 96/118=0.82           | 8/20=0.40           | 13/20=0.65                | 15/20=0.75*             | 18/20=0.90**             | 3/20=0.15           |
|           |               | 4    | 104/120=0.87          | 14/20=0.70          | 13/20=0.65                | 17/20=0.85              | 15/19=0.79               | 5/20=0.25**         |
|           | •             | 5    | 95/119=0.80           | 15/20=0.75          | 15/20=0.75                | 19/20=0.95              | 19/20=0.95               | 11/20=0.55          |
|           | !<br>!        | 6    | 96/119=0.81           | 13/20=0.65          | 14/20=0.70                | 18/20=0.90              | 20/20=1.00**             | 16/20=0.80          |
|           |               | 7    | 103/118=0.88          | 14/20=0.70          | 13/20=0.65                | 17/20=0.85              | 16/20=0.80               | 19/20=0.95*         |
|           |               | 8    | 102/120=0.85          | 14/20=0.70          | 16/20=0.80                | 18/20=0.90              | 13/18=0.73               | 18/20=0.90          |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

<sup>\*</sup> SIGNIFICANTLY DIFFERENT FROM CONTROL

<sup>!</sup> SIGNIFICANT LINEAR RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE II
COMPOUND 46 STUDY ACUTE

# AVERAGE NUMBER OF IMPLANTATIONS PER PREGNANT FEMALE

| OG<br>OSE | ARITH<br>DOSE | WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL 2.500 MG/KG | DOSE LEVEL 25.000 MG/KG | DOSE LEVEL 250.000 MG/KG | POSITIVE<br>CONTROL  |
|-----------|---------------|------|-----------------------|---------------------|------------------------|-------------------------|--------------------------|----------------------|
|           |               | 1    | 1026/ 83=12.4         | 154/12=12.8         | 96/8=12.0              | 154/12=12.8             | 107/8=13.4               | 102/10=10.2*3D<br>3D |
| !         |               | 2    | 1099/ 92=12.0         | 124/11=11.3         | 97/ 9=10.8             | 220/17=12.9*@           | ðI 139/11=12.6ðI         | 32/ 4= 8.0           |
| !         |               | 3    | 1178/ 96=12.3         | 98/8=12.3           | 166/13=12.8            | 171/15=11.4             | 203/18=11.3<br>ap        | 37/ 3=12.3           |
| !         |               | 4    | 1231/104=11.8         | 177/14=12.6         | 145/13=11.2            | 212/17=12.5             | 194/15=12.9              | 54/ 5=10.8           |
| -         |               | 5    | 1121/ 95=11.8         | 169/15=11.3         | 185/15=12.3            | 210/19=11.1             | 235/19=12.4              | 129/11=11.7          |
| 1         | ε!            | 6    | 1125/ 96=11.7         | 167/13=12.9<br>*@I  | 172/14=12.3            | 217/18=12.1             | 222/20=11.1**@@!         | 0193/16=12.1         |
|           |               | 7    | 1260/103=12.2         | 176/14=12.6         | 162/13=12.5            | 221/17=13.0             | 192/16=12.0              | 222/19=11.7          |
|           |               | 8    | 1192/102=11.7         | 161/14=11.5         | 171/16=10.7            | 224/18=12.4             | 149/13=11.5              | 205/18=11.4          |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

E AND \* = TWO-TAILED TEST ! AND @ = ONE-TAILED TEST

ONE !,  $\delta$ ,  $\delta$ ,  $\star$  = SIGNIFICANT AT P LESS THAN 0.05 TWO !,  $\delta$ ,  $\delta$ ,  $\star$  = SIGNIFICANT AT P LESS THAN 0.01

<sup>\*,</sup> D SIGNIFICANTLY DIFFERENT FROM CONTROL

E,! SIGNIFICANT RELATIONSHIP WITH APITH OR LOG DOSE (HEADING OF COLUMN)

# TABLE III COMPOUND 46 STUDY ACUTE

## AVERAGE CORPORA LUTEA PER PREGNANT FEMALE

| OSE DOSE   |   | HISTORICAL CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL<br>2.500 MG/KG |                          | DOSE LEVEL<br>250.000 MG/KG | POSITIVE<br>CONTROL       |
|------------|---|--------------------|---------------------|---------------------------|--------------------------|-----------------------------|---------------------------|
| !          | 1 | 1126/83=13.6       |                     | 109/ 8=13.6*aD<br>aar     | ) 188/12=15.7<br>*@)     | 119/8=14.9<br>I 9I          | 136/10=13.6*aD            |
|            | 2 | 1220/ 92=13.3      | 139/11=12.6         | 120/9=13.3                | 234/17=13.8              | 151/11=13.7                 | 52/ 4=13.0                |
|            | 3 | 1254/ 96=13.1      | 110/8=13.8          | 180/13=13.9               | 187/15=12.5              | 247/18=13.7                 | 40/ 3=13.3                |
| 11 3 113   | 4 | 1316/104=12.7      | 216/14=15.4         | 169/13=13.0**a            | 0dD234/17=13.8*@!<br>*@] |                             |                           |
| !<br>! & ! | 5 | 1194/ 95=12.6      |                     | 211/15=14.1<br>aar ar     | 242/19=12.7**            | ᲔᲛ D265/19=14.0*aD<br>**a   | ก 140/11=12.7**จ∂ย<br>ออเ |
| 8!! 88!!   | 6 | 1233/ 96=12.8      | 213/13=16.4         | 233/14=16.6<br>@@I **@    |                          | 315/20=15.8<br>@@I **@      |                           |
| 8!! 8 !!   | 7 | 1319/103=12.8      |                     | 180/13=13.9DD             | 251/17=14.8<br>*ai       | 234/16=14.6<br>DI *@I       |                           |
|            | 8 | 1410/102=13.8      | 189/14=13.5         | 210/16=13.1               | 260/18=14.4              | 175/13=13.5                 | 227/18=12.6               |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

ε AND \* = TWO-TAILED TEST ! AND Φ = ONE-TAILED TEST

ONE !,  $\delta$ ,  $\delta$ ,  $\star$  = SIGNIFICANT AT P LESS THAN 0.05 TWO !,  $\delta$ ,  $\delta$ ,  $\star$  = SIGNIFICANT AT P LESS THAN 0.01

\*, D SIGNIFICANTLY DIFFERENT FROM CONTROL

8, SIGNIFICAND DELATIONSHIP WITH ARITH OR LOG DOSE (HPADING OF COLUMN)

TABLE IV
COMPOUND 46 STUDY ACUTE

# AVERAGE PREIMPLANTATION LOSSES PER PREGNANT FEMALE

|             | ARITH<br>DOSE |   | HISTORICAL<br>CONTROL |                    | DOSE LEVEL<br>2.500 MG | DOSE LEVE<br>G/KG 25.000 |                | LEVEL .000 MG/KG         | POSITIVE<br>CONTROL   |
|-------------|---------------|---|-----------------------|--------------------|------------------------|--------------------------|----------------|--------------------------|-----------------------|
| Ī           |               | 1 | 100/ 83= 1.2          | 42/12= 3.5<br>*@I  | 13/ 8= 1.              | .6 34/12=                | 2.8<br>*@I     | 12/ 8= 1.5               | 34/10= 3.4<br>*@%T    |
|             |               | 2 | 121/ 92= 1.3          | 15/11= 1.4         | 23/ 9= 2               | .6 14/17=                | 0.8            | 12/11= 1.1               | 20/ 4= 5.0*aI<br>**aa |
| 1133        | !<br>!!33     | 3 | 76/ 96= 0.8           | 12/ 8= 1.5         | 14/13= 1.              | .1 16/15=                | 1.1            | 44/18= 2.4<br>*@I        | 3/ 3= 1.0             |
| ε !<br>!    |               | 4 | 85/104= 0.8           | 39/14= 2.8<br>**@@ | 24/13= 1.              | .9 22/17=                | 1.30D 1<br>*aI | 17/15= 1.19D             | 11/ 5= 2.2            |
| : 3<br>::33 |               | 5 | 73/ 95= 0.8           | 65/15= 4.3<br>**@@ | 26/15= 1.              | .7*@pp 32/19=            | 1.7**aab 3     | 30/19= 1.6**DDD<br>**DDI | 11/11= 1.0**aa        |
| 1133        | 1133          | 6 | 108/ 96= 1.1          | 46/13= 3.5<br>**@@ | 61/14= 4.              | .4 86/18=<br>**@@I       | 4.8 9<br>**@dI | 93/20= 4.7<br>**@@I      | 68/16= 4.3<br>**@a    |
| 1133        | 88!!          | 7 | 59/103= 0.6           | 48/14= 3.4<br>**aa | 18/13= 1.              | .4 30/17=<br>*@I         | 1.8 4<br>*aI   |                          | 87/19= 4.6<br>**@@    |
|             |               | 8 | 218/102= 2.1          | 28/14= 2.0         | 39/16= 2.              | .4 36/18=                | 2.0 2          | 26/13= 2.0               | 22/18= 1.2            |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

& AND \* = TWO-TAILED TEST
! AND @ = ONE-TAILED TEST

ONE !, $\epsilon$ , $\delta$ ,\* = SIGNIFICANT AT P LESS THAN 0.05 TWO !, $\epsilon$ , $\delta$ ,\* = SIGNIFICANT AT P LESS THAN 0.01

<sup>\*, #</sup> SIGNIFICANTLY DIFFERENT FROM CONTROL

E.! SIGNIFICANT RELATIONSHIP WITH ARITH OF LOG DOSE (HEADING OF COLUMN)

TABLE V
COMPOUND 46 STUDY ACUTE

# AVERAGE RESORPTIONS (DEAD IMPLANTS) PER PREGNANT FEMALE

| LOG A          | RITH | WEEK | HISTORICAL CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL<br>2.500 MG/KG | DOSE LEVEL 25.000 MG/KG | DOSE LEVEL 250.000 MG/KG | POSITIVE CONTROL         |
|----------------|------|------|--------------------|---------------------|---------------------------|-------------------------|--------------------------|--------------------------|
|                |      | 1    | 16/ 83=0.20        | 4/12=0.34           | 1/ 8=0.13                 | 4/12=0.34               | 2/8=0.25                 | 36/10=3.60**aar<br>**aar |
|                |      | 2    | 35/ 92=0.39        | 8/11=0.73           | 3/ 9=0.34                 | 10/17=0.59              | 3/11=0.28                | 3/ 4=0.75                |
|                |      | 3    | 53/ 96=0.56        | 0/8=0.0<br>**â      |                           | 5/15=0.34*@I            | 9/18=0.50*anI            | 6/ 3=2.00@I              |
| ε !! ε         | . 1  | 4    | 46/104=0.45        | 7/14=0.50           | 5/13=0.39                 | 15/17=0.89              | 19/15=1.27               | 13/ 5=2.60               |
| !              |      | 5    | 52/ 95=0.55        | 8/15=0.54           | 13/15=0.87                | 14/19=0.74              | 23/19=1.22               | 50/11=4.55**aaI<br>**aaI |
| 88!!8<br>88!!8 |      | 6    | 40/96=0.42         | 5/13=0.39           | 4/14=0.29                 | 14/18=0.78<br>*@I       | 28/20=1.40*@@I<br>**@@I  | 20/16=1.25*@I<br>*@@I    |
|                |      | 7    | 45/103=0.44        | 8/14=0.58           | 12/13=0.93<br>@I          | 8/17=0.48               | 16/16=1.00               | 14/19=0.74               |
|                |      | 8    | 56/102=0.55        | 9/14=0.65           | 3/16=0.19@p<br>*@D        | 9/18=0.50               | 13/13=1.00               | 24/18=1.34<br>*@@I       |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

& AND \* = TWO-TAILED TEST
! AND @ = ONE-TAILED TEST

ONE  $!, \delta, \partial, *$  = SIGNIFICANT AT P LESS THAN 0.05 TWO  $!, \delta, \partial, *$  = SIGNIFICANT AT P LESS THAN 0.01

<sup>\*,</sup> d SIGNIFICANTLY DIFFERENT FROM CONTROL

S,! SIGNIFICANT PELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE VI
COMPOUND 46 STUDY ACUTE

# PROPORTION OF FEMALES WITH ONE OR MORE DEAD IMPLANTATIONS

| LOG<br>DOSE | ARITH<br>DOSE | WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL<br>2.500 MG/KG | DOSE LEVEL<br>25.000 MG/KG | DOSE LEVEL 250.000 MG/KG | POSITIVE<br>CONTROL |
|-------------|---------------|------|-----------------------|---------------------|---------------------------|----------------------------|--------------------------|---------------------|
|             |               | 1    | 16/ 83=0.20           | 3/12=0.25           | 1/8=0.13                  | 2/12=0.17                  | 2/8=0.25                 | 7/10=0.70*          |
|             |               | 2    | 26/ 92=0.29           | 6/11=0.55           | 3/ 9=0.34                 | 7/17=0.42                  | 2/11=0.19                | 1/ 4=0.25           |
|             |               | 3    | 32/ 96=0.34           | 0/8=0.0             | 6/13=0.47*                | 4/15=0.27                  | 6/18=0.34                | 2/ 3=0.67*          |
|             |               | 4    | 34/104=0.33           | 5/14=0.36           | 5/13=0.39                 | 8/17=0.48                  | 7/15=0.47                | 3/ 5=0.60           |
|             |               | 5    | 33/ 95=0.35           | 3/15=0.20           | 9/15=0.60*                | 8/19=0.43                  | 8/19=0.43                | 11/11=1.00**        |
| !!          | !!            | 6    | 31/ 96=0.33           | 5/13=0.39           | 3/14=0.22                 | 11/18=0.62                 | 14/20=0.70               | 10/16=0.63          |
|             | ·             | 7    | 33/103=0.33           | 5/14=0.36           | 7/13=0.54                 | 5/17=0.30                  | 5/16=0.32                | 9/19=0.48           |
|             |               | 8    | 37/102=0.37           | 7/14=0.50           | 3/16=0.19                 | 6/18=0.34                  | 4/13=0.31                | 13/18=0.73          |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

ONE !,\* = SIGNIFICANT AT P LESS THAN 0.05 TWO !,\* = SIGNIFICANT AT P LESS THAN 0.01

<sup>\*</sup> SIGNIFICANTLY DIFFERENT FROM CONTROL

<sup>!</sup> SIGNIFICANT LINEAR RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE VII
COMPOUND 46 STUDY ACUTE

## PORPORTION OF FEMALES WITH TWO OR MORE DEAD IMPLANIATIONS

| LOG<br>DOSE | ARITH<br>DOSE | WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL<br>2.500 MG/KG | DOSE LEVEL<br>25.000 MG/KG | DOSE LEVEL 250.000 MG/KG | POSITI VE<br>CONTROL |
|-------------|---------------|------|-----------------------|---------------------|---------------------------|----------------------------|--------------------------|----------------------|
|             |               | 1    | 0/83=0.0              | 1/12=0.09           | 0/8=0.0                   | 1/12=0.09                  | 0/8=0.0                  | 7/10=0.70**<br>**    |
|             |               | 2    | 9/ 92=0.10            | 2/11=0.19           | 0/9=0.0                   | 2/17=0.12                  | 1/11=0.10                | 1/ 4=0.25            |
|             |               | 3    | 16/ 96=0.17           | 0/8=0.0             | 1/13=0.08                 | 1/15=0.07                  | 2/18=0.12                | 2/ 3=0.67*           |
| !           | !             | 4    | 9/104=0.09            | 2/14=0.15           | 0/13=0.0                  | 4/17=0.24                  | 4/15=0.27                | 3/ 5=0.60*<br>**     |
| !           | !             | 5    | 14/ 95=0.15           | 2/15=0.14           | 2/15=0.14                 | 4/19=0.22                  | 7/19=0.37                | 9/11=0.82**          |
| !           | !<br>!        | 6    | 9/ 96=0.10            | 0/13=0.0            | 1/14=0.08                 | 3/18=0.17                  | 6/20=0.30*               | 6/15=0.38*           |
|             |               | 7    | 8/103=0.08            | 3/14=0.22           | 5/13=0.39                 | 2/17=0.12                  | 4/16=0.25<br>*           | 3/19=0.16            |
|             |               | 8    | 16/102=0.16           | 2/14=0.15           | 0/16=0.0                  | 1/18=0.06                  | 3/13=0.24                | 3/18=0.17            |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

<sup>\*</sup> SIGNIFICANTLY DIFFERENT FROM CONTROL

<sup>!</sup> SIGNIFICANT LINEAR RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

# TABLE VIII COMPOUND 46 STUDY ACUTE

#### DEAD IMPLANTS / TOTAL IMPLANTS

| WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL 1<br>2.500 MG/KG | DOSE LEVEL D<br>25.000 MG/KG | DOSE LEVEL<br>250.000 MG/KG | POSITIVE<br>CONTROL    |
|------|-----------------------|---------------------|-----------------------------|------------------------------|-----------------------------|------------------------|
| 1    | 16/1026=0.02          | 4/154=0.03          | 1/ 96=0.02                  | 4/154=0.03                   | 2/107=0.02                  | 36/102=0.36**ā<br>**ð3 |
| 2    | 35/1099=0.04          | 8/124=0.07          | 3/ 97=0.04                  | 10/220=0.05                  | 3/139=0.03@D<br>@D          | 3/ 32=0.10             |
| 3    | 53/1178=0.05          | 0/98=0.0<br>**aa    | 7/166=0.05*@@]              | 5/171=0.03*@I                | 9/203=0.05*@I               | 6/ 37=0.17             |
| 4    | 46/1231=0.04          | 7/177=0.04          | 5/145=0.04                  | 15/212=0.08                  | 19/194=0.10                 | 13/ 54=0.25            |
| 5    | 52/1121=0.05          | 8/169=0.05          | 13/185=0.08                 | 14/210=0.07                  | 23/235=0.10                 | 50/129=0.39*aI<br>**aa |
| 6    | 40/1125=0.04          | 5/167=0.03          | 4/172=0.03                  | 14/217=0.07*@I               | 28/222=0.13**@dI<br>**@dI   |                        |
| 7    | 45/1260=0.04          | 8/176=0.05          | 12/162=0.08                 | 8/221=0.04                   | 16/192=0.09                 | 14/222=0.07            |
| 8    | 56/1192=0.05          | 9/161=0.06          | 3/171=0.02                  | 9/224=0.05                   | 13/149=0.09                 | 24/205=0.12<br>*@I     |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT DIFFERENCES USING THE HISTORICAL CONTROL GROUP

<sup>\* =</sup> TWO-TAILED TEST

<sup>@ =</sup> ONE-TAILED TEST

ONE \*, $\vartheta$  = SIGNIFICANT AT P LESS THAN 0.05 TWO \*, $\vartheta$  = SIGNIFICANT AT P LESS THAN 0.01

<sup>\*, @</sup> SIGNIFICANTLY DIFFERENT FROM CONTROL

TABLE I STUDY SUBACUTE

#### FERTILITY INDEX

| LOG<br>DOSE | ARITH<br>DOSE | WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL<br>2.500 MG/KG | DOSE LEVEL 25.000 MG/KG | DOSE LEVEL 250.000 MG/KG |
|-------------|---------------|------|-----------------------|---------------------|---------------------------|-------------------------|--------------------------|
| !           |               | 1    | 82/119=0.69           | 10/20=0.50          | 11/20=0.55                | 11/20=0.55              | 9/20=0.45                |
|             |               | 2    | 89/120=0.75           | 15/20=0.75          | 15/20=0.75                | 17/20=0.85              | 11/20=0.55               |
|             |               | 3    | 89/119=0.75           | 12/20=0.60          | 13/20=0.65                | 13/20=0.65              | 15/20=0.75               |
|             |               | 4    | 91/114=0.80           | 13/20=0.65          | 15/20=0.75                | 15/20=0.75              | 14/20=0.70               |
|             |               | 5    | 92/119=0.78           | 16/20=0.80          | 15/20=0.75                | 14/20=0.70              | 15/20=0.75               |
|             |               | 5    | 101/119=0.85          | 19/20=0.95          | 17/20=0.85                | 17/20=0.85              | 15/20=0.75               |
|             |               | 7    | 100/115=0.87          | 17/20=0.85          | 17/20=0.85                | 15/20=0.75              | 17/20=0.85               |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

<sup>\*</sup> SIGNIFICANTLY DIFFERENT FROM CONTROL

<sup>!</sup> SIGNIFICANT LINEAR RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE II
COMPOUND 46 STUDY SUBACUTE

#### AVERAGE NUMBER OF IMPLANTATIONS PER PREGNANT FEMALE

| LOG | ARITH<br>DOSE | WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL<br>2.500 MG/KG | DOSE LEVEL 25.000 MG/KG | DOSE LEVEL 250.000 MG/KG |
|-----|---------------|------|-----------------------|---------------------|---------------------------|-------------------------|--------------------------|
|     |               | 1    | 966/ 82=11.8          | 118/10=11.8         | 145/11=13.2<br>*@3        | 131/11=11.9             | 104/ 9=11.6              |
|     |               | 2    | 1115/ 89=12.5         | 186/15=12.4         | 191/15=12.7               | 213/17=12.5             | 138/11=12.6              |
|     |               | 3    | 1049/89=11.8          | 147/12=12.3         | 163/13=12.5               | 160/13=12.3             | 175/15=11.7              |
|     |               | 4    | 1085/ 91=11.9         | 136/13=10.5<br>*ap  | 181/15=12.1*@]            | 170/15=11.3             | 171/14=12.2*@I           |
| ,   |               | 5    | 1110/ 92=12.1         | 189/16=11.8         | 175/15=11.7               | 172/14=12.3             | 175/15=11.7              |
| ε!  | ε!            | 6    | 1191/101=11.8         | 246/19=13.0         | 193/17=11.4aD             | 206/17=12.1             | 158/15=10.5*@D           |
|     |               | 7    | 1138/100=11.4         | 214/17=12.6<br>@I   | 193/17=11.4               | 181/15=12.1             | 206/17=12.1<br>DI        |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

& AND \* = TWO-TAILED TEST
! AND @ = ONE-TAILED TEST

ONE !,  $\varepsilon$ ,  $\omega$ , \* = SIGNIFICANT AT P LESS THAN 0.05 TWO !,  $\varepsilon$ ,  $\omega$ , \* = SIGNIFICANT AT P LESS THAN 0.01

\*, @ SIGNIFICANTLY DIFFERENT FROM CONTROL

E,! SIGNIFICANT RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE III

COMPOUND 46

STUDY SUBACUTE

# AVERAGE CORPORA LUTEA PER PPEGNANT FEMALE

|           | ABITH<br>DOSE | WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL |                        | POSE LEVEL 25.000 MG/KG | DOSE LEVEL 250.000 Mg/kg |
|-----------|---------------|------|-----------------------|---------------------|------------------------|-------------------------|--------------------------|
|           |               | 1    | 1079/ 82=13.2         | 139/10=13.9         | 177/11=16.1<br>**â     | 149/11=13.6             | 121/ 9=13.4              |
|           |               | 2    | 1189/ 89=13.4         | 206/15=13.7         | 216/15=14.4            | 254/17=14.9<br>ai       |                          |
| 1133      | ٤!!           | 3    | 1125/ 89=12.6         | 165/12=13.8         | 185/13=14.2<br>@I      | 180/13=13.9             |                          |
| ε!        |               | 4    | 1134/ 91=12.5         | 151/13=11.6<br>aD   | 207/15=13.8*aa<br>aI   | or 207/15=13.8**<br>@r  | ⊅ÐI187/14=13.4*ÐI        |
| ε!!       |               | 5    | 1157/ 92=12.6         | 209/16=13.1         | 204/15=13.6            | 190/14=13.6             |                          |
| !<br>88!! | !             | 6    | 1268/101=12.6         | 312/19=16.4         | 258/17=15.2<br>I **a   |                         | 208/15=13.9*@D<br>@@I @I |
| 88!!      | 1133          | 7    | 1215/100=12.2         | 259/17=15.2<br>**aa | 230/17=13.5aD<br>I **a |                         |                          |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

& AND \* = TWO-TAILED TEST
! AND @ = ONE-TAILED TEST

ONE !,  $\varepsilon$ ,  $\partial$ , \* = SIGNIFICANT AT P LESS THAN 0.05 TWO !,  $\varepsilon$ ,  $\partial$ , \* = SIGNIFICANT AT P LESS THAN 0.01

\*, @ SIGNIFICANTLY DIFFERENT FROM CONTROL

E,! SIGNIFICANT RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE IV
COMPOUND 46 STUDY SUBACUTE

#### AVERAGE PREIMPLANTATION LOSSES PER PREGNANT PEMALE

|      | ARITH<br>DOSE |   | HISTORICAL CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL 2.500 MG/KG |                     | DOSE LEVEL 250.000 MG/KG  |
|------|---------------|---|--------------------|---------------------|------------------------|---------------------|---------------------------|
|      |               | 1 | 113/ 82= 1.4       | 21/10= 2.1          | 32/11= 2.9<br>**ā      |                     | 17/ 9= 1.9                |
| ε !  |               | 2 | 74/ 89= 0.8        | 20/15= 1.3          | 25/15= 1.7<br>*თმ      |                     | 9/11= 0.8<br>**aar        |
| 88!! | 1133          | 3 | 76/ 89= 0.9        | 18/12= 1.5<br>*@I   | 22/13= 1.7<br>ar       |                     | 45/15= 3.0<br>*aai        |
| 1133 |               | 4 | 49/ 91= 0.5        | 15/13= 1.2          | 26/15= 1.7<br>*@â      |                     | DI 16/14= 1.1<br>**api at |
| 88!! | 88!!          | 5 | 47/ 92= 0.5        | 20/16= 1.3<br>*@dI  | 29/15= 1.9<br>*ai      |                     | 30/15= 2.0<br>**aai       |
| 8811 | 88!!          | 6 | 77/101= 0.8        | 66/19= 3.5<br>**@@  | 65/17= 3.8<br>**ā      | 63/17= 3.7<br>Dai * | 50/15= 3.3<br>**@@I **@@I |
| 88!! | & !!          | 7 | 77/100= 0.8        | 45/17= 2.7<br>*@I   | 37/17= 2.2<br>*@1      |                     | 33/17= 1.9<br>*aai        |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

& AND \* = TWO-TAILED TEST
! AND @ = ONE-TAILED TEST

ONE !,  $\varepsilon$ ,  $\vartheta$ , \* = SIGNIFICANT AT P LESS THAN 0.05 TWO !,  $\varepsilon$ ,  $\vartheta$ , \* = SIGNIFICANT AT P LESS THAN 0.01

\*, D SIGNIFICANTLY DIFFERENT FROM CONTROL 8,! SIGNIFICANT RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE V
COMPOUND 46 STUDY SUBACUTE

# AVERAGE RESORPTIONS (DEAD IMPLANTS) PER PREGNANT FEMALE

| LOG | ARITH<br>DOSE | WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL 2.500 MG/KG | DOSE LEVEL 25.000 MG/KG | DOSE LEVEL 250.000 Mg/KG |
|-----|---------------|------|-----------------------|---------------------|------------------------|-------------------------|--------------------------|
|     |               | 1    | 33/ 82=0.41           | 2/10=0.20           | 9/11=0.8201            | 2/11=0.19               | 3/9=0.34                 |
|     |               | 2    | 45/89=0.51            | 4/15=0.27           | 6/15=0.40              | 7/17=0.42               | 3/11=0.28                |
|     |               | 3    | 47/ 89=0.53           | 8/12=0.67           | 11/13=0.85             | 8/13=0.62               | 10/15=0.67               |
|     |               | 4    | 51/ 91=0.57           | 10/13=0.77          | 17/15=1.14             | 13/15=0.87              | 8/14=0.58                |
|     |               | 5    | 56/ 92=0.61           | 15/16=0.94          | 7/15=0.47              | 8/14=0.58               | 6/15=0.40aD              |
|     |               | 6    | 46/101=0.46           | 1/19=0.06           | 16/17=0.95**@@1<br>@@D | 4/17=0.24               | 6/15=0.40*@I             |
|     |               | 7    | 52/100=0.52           | 7/17=0.42           | 16/17=0.95øI<br>*@I    | 18/15=1.20              | 7/17=0.42                |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

δ AND \* = TWO-TAILED TEST ! AND δ = ONE-TAILED TEST

ONE !,  $\delta$ ,  $\delta$ , \* = SIGNIFICANT AT P LESS THAN 0.05 TWO !,  $\delta$ ,  $\delta$ , \* = SIGNIFICANT AT P LESS THAN 0.01

\*, D SIGNIFICANTLY DIFFERENT FROM CONTROL

E,! SIGNIFICANT RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE VI
COMPOUND 46 STUDY SUBACUTE

# PROPORTION OF FEMALES WITH ONE OR MORE DEAD IMPLANTATIONS

| LOG<br>DOSE | ARITH<br>DOSE | WEEK | HISTORICAL CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL<br>2.500 MG/KG | DOSE LEVEL<br>25.000 MG/KG | DOSE LEVEL<br>250.000 MG/KG |
|-------------|---------------|------|--------------------|---------------------|---------------------------|----------------------------|-----------------------------|
|             |               | 1    | 27/ 82=0.33        | 1/10=0.10           | 6/11=0.55*                | 2/11=0.19                  | 1/ 9=0.12                   |
|             |               | 2    | 29/ 89=0.33        | 3/15=0.20           | 2/15=0.14                 | 6/17=0.36                  | 3/11=0.28                   |
|             |               | 3    | 30/89=0.34         | 4/12=0.34           | 5/13=0.39                 | 6/13=0.47                  | 6/15=0.40                   |
|             |               | 4    | 30/91=0.33         | 8/13=0.62           | 8/15=0.54                 | 5/15=0.34                  | 5/14=0.36                   |
| •           | i             | 5    | 39/ 92=0.43        | 10/16=0.63          | 6/15=0.40                 | 4/14=0.29                  | 5/15=0.34                   |
|             |               | 6    | 32/101=0.32        | 1/19=0.06           | 8/17=0.48**               | 3/17=0.18                  | 5/15=0.34*                  |
|             |               | 7    | 28/100=0.28        | 6/17=0.36           | 11/17=0.65                | 6/15=0.40                  | 5/17=0.30                   |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

<sup>\*</sup> SIGNIFICANTLY DIFFERENT FROM CONTROL

<sup>!</sup> SIGNIFICANT LINEAR RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE VII
COMPOUND 46 STUDY SUBACUTE

# PORPORTION OF FEMALES WITH TWO OR MORE DEAD IMPLANTATIONS

| LOG<br>DOSE | ARITH<br>DOSE | WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL<br>2.500 MG/KG | DOSE LEVEL<br>25.000 MG/KG | DOSE LEVEL 250.000 Mg/Kg |
|-------------|---------------|------|-----------------------|---------------------|---------------------------|----------------------------|--------------------------|
|             |               | 1    | 5/ 82=0.07            | 1/10=0.10           | 1/11=0.10                 | 0/11=0.0                   | 1/ 9=0.12                |
|             |               | 2    | 7/ 89=0.08            | 1/15=0.07           | 2/15=0.14                 | 1/17=0.06                  | 0/11=0.0                 |
|             |               | 3    | 10/89=0.12            | 4/12=0.34           | 1/13=0.08                 | 2/13=0.16                  | 3/15=0.20                |
|             |               | 4    | 12/91=0.14            | 2/13=0.16           | 2/15=0.14                 | 3/15=0.20                  | 3/14=0.22                |
|             |               | 5    | 14/ 92=0.16           | 4/16=0.25           | 1/15=0.07                 | 1/14=0.08                  | 1/15=0.07                |
|             |               | 6    | 9/101=0.09            | 0/19=0.0            | 3/17=0.18                 | 1/17=0.06                  | 1/15=0.07                |
|             |               | 7    | 13/100=0.13           | 1/17=0.06           | 3/17=0.18                 | 4/15=0.27                  | 2/17=0.12                |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

<sup>\*</sup> SIGNIFICANTLY DIFFERENT FROM CONTROL

<sup>!</sup> SIGNIFICANT LINEAR RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

# TABLE VIII COMPOUND 46 STUDY SUBACUTE

## DEAD IMPLANTS / TOTAL IMPLANTS

| WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL D 2.500 MG/KG | OSE LEVEL 25.000 MG/KG | DOSE LEVEL 250.000 MG/KG |
|------|-----------------------|---------------------|--------------------------|------------------------|--------------------------|
| 1    | 33/ 966=0.04          | 2/118=0.02          | 9/145=0.07               | 2/131=0.02             | 3/104=0.03               |
| 2    | 45/1115=0.05          | 4/186=0.03          | 5/191=0.04               | 7/213=0.04             | 3/138=0.03               |
| 3    | 47/1049=0.05          | 8/147=0.06          | 11/163=0.07              | 8/160=0.05             | 10/175=0.06              |
| Ц    | 51/1085=0.05          | 10/136=0.08         | 17/181=0.10              | 13/170=0.08            | 8/171=0.05               |
| 5    | 56/1110=0.06          | 15/189=0.08         | 7/175=0.04@D             | 8/172=0.05             | 6/175=0.04               |
| 6    | 46/1191=0.04          | 1/246=0.01          |                          | 4/206=0.02             | 6/158=0.04@I             |
| 7    | 52/1138=0.05          | 7/214=0.04          | 16/193=0.09*aar<br>ar    | 18/181=0.10            | 7/206=0.04               |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT DIFFERENCES USING THE HISTORICAL CONTROL GROUP

- \* = TWO-TAILED TEST
- a = ONE-TAILED TEST
- ONE \*, D = SIGNIFICANT AT P LESS THAN 0.05 TWO \*, D = SIGNIFICANT AT P LESS THAN 0.01
- \*, @ SIGNIFICANTLY DIFFERENT FROM CONTROL

# 8. Dominant Lethal Study - Test II

Compound FDA 71-46, Sodium Tripolyphosphate, was administered to ten male rats (350 grams) at the dosage levels of 2,500 mg/kg according to acute (single dose) and 1,100 mg/kg according to subacute (five doses) protocols. Each treated male rat was mated with two virgin female rats each week for seven (subacute) and eight (acute) weeks. Two weeks after mating, female rats were sacrificed and the fertility index, preimplantation loss and lethal effects on the embryos were determined and compared with those same parameters calculated from negative (saline-dosed) and positive (0.3 mg/kg TEM-dosed) control animals.

Among the animals dosed with compound FDA 71-46, Sodium Tripolyphosphate, there is a significant increase in the number of implants resorbed during week one of the high acute.

If we consider that one of the eight pregnant females had five dead embryos among a total of seven and treat her as an outlier, then the calculated ratio comes more into line with the values obtained for the other rats.

No significant alterations were found in the parameters under consideration among the subacute animals except for a slight (but insignificant) decrease in fertility during the first three weeks.

No significant trends indicative of dominant lethality can be found in comparing data from Test II with that from Test I. It should be noted however, that one technician ("DB") recorded results on both tests.



DOMINANT LETHAL ASSAY SUMMARY SHEETS

CONTRACT FDA 71-268

COMPOUND FDA 71-46

SODIUM TRIPOLYPHOSPHATE

TEST II

(Through error the computer had been programmed so that a double rounding off of numbers occurred at print out. In no way does this alter the statistics which are calculated on the full unrounded numbers.)



TABLE I
COMPOUND 46 STUDY ACUTE

#### FERTILITY INDEX

| LOG<br>DOSE | ARITH<br>DOSE | WEEK | HISTORICAL CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL 2500. MG/KG | POSITIVE<br>CONTROL |
|-------------|---------------|------|--------------------|---------------------|------------------------|---------------------|
|             |               | 1    | 154/219=0.71       | 9/ 20=0.45          | 8/ 16=0.50             | 14/ 20=0.70         |
|             |               | 2    | 169/219=0.78       | 9/ 20=0.45          | 10/ 16=0.63            | 9/ 20=0.45          |
|             |               | 3    | 168/218=0.78       | 10/ 20=0.50         | 10/ 16=0.63            | 12/ 20=0.60         |
|             |               | 4    | 189/220=0.86       | 14/ 20=0.70         | 12/ 16=0.75            | 5/ 20=0.25**        |
| ,           |               | 5    | 175/219=0.80       | 10/ 20=0.50         | 8/ 16=0.50<br>**       | 18/ 20=0.90**       |
|             |               | 6    | 175/219=0.80       | 11/ 20=0.55         | 13/ 16=0.82            | 18/ 20=0.90*        |
|             |               | 7    | 184/217=0.85       | 13/ 20=0.65         | 14/ 16=0.88            | 15/ 20=0.75         |
|             |               | 8    | 182/220=0.83       | 18/ 20=0.90         | 15/ 16=0.94            | 16/ 20=0.80         |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

<sup>\*</sup> SIGNIFICANTLY DIFFERENT FROM CONTROL

<sup>!</sup> SIGNIFICANT LINEAR RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE II
COMPOUND 46 STUDY ACUTE

#### AVERAGE NUMBER OF IMPLANTATIONS PER PREGNANT FEMALE

| LOG ARITH<br>DOSE DOSE WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL 2500. MG/KG | POSITIVE<br>CONTROL        |
|-----------------------------|-----------------------|---------------------|------------------------|----------------------------|
| 1                           | 1923/154=12.5         | 115/ 9=12.8         | 99/ 8=12.4             | 12// 14= 9.1**daD<br>**daD |
| 2                           | 2053/169=12.2         | 102/ 9=11.3         | 125/.10=12.5           | 52/ 9= 5.8*aD<br>**aaD     |
| 3                           | 2040/168=12.1         | 132/ 10=13.2<br>DI  | 120/ 10=12.0           | 71/ 12= 5.9**@@D<br>**@@D  |
| t†                          | 2271/189=12.0         | 181/ 14=12.9<br>ar  | 133/ 12=11.1*@D        | 32/ 5= 6.4*ap<br>*ap       |
| 5                           | 2099/175=12.0         | 122/ 10=12.2        | 96/ 8=12.0             | 176/ 18= 9.8*aaD<br>**aaD  |
| 6                           | 2122/175=12.1         | 132/ 11=12.0        | 161/ 13=12.4           | 198/ 18=11.0               |
| 7                           | 2265/184=12.3         | 173/ 13=13.3        | 165/ 14=11.8           | 195/ 15=13.0               |
| 8                           | 2177/182=12.0         | 219/ 18=12.2        | 173/ 15=11.5           | 200/ 16=12.5               |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

8 AND \* = TWO-TAILED TEST ! AND 0 = ONE-TAILED TEST

ONE !, &, \alpha, \* = SIGNIFICANT AT P LESS THAN 0.05 TWO !, \alpha, \alpha = SIGNIFICANT AT P LESS THAN 0.01

\* \*, a SIGNIFICANTLY DIFFERENT FROM CONTROL

8,! SIGNIFICANT RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE III COMPOUND 46 STUDY ACUTE

#### AVERAGE CORPORA LUTEN PER PREGNANT FEMALE

| LOG<br>DOSE | ARITH<br>DOSE | WEFK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL 2500. MG/KG | POSITIVE CONTROL      |
|-------------|---------------|------|-----------------------|---------------------|------------------------|-----------------------|
|             |               | 1    | 2187/154=14.2         | 133/ 9=14.8         | 115/ 8=14.4            | 205/ 14=14.6          |
|             |               | 2    | 2337/169=13.8         | 144/ 9=16.0         | 140/- 10=14.0          | 156/ 9=17.3<br>**@@I  |
| •           |               | 3    | 2302/168=13.7         | 150/ 10=15.0        | 154/ 10=15.4           | 160/ 12=13.3          |
|             |               | ţ    | 2531/189=13.4         | 208/ 14=14.9<br>*@I | 154/ 12=12.8*aD        | 61/ 5=12.2*aab<br>ab  |
|             |               | 5    |                       | 135/ 10=13.5        | 112/ 8=14.0            | 241/ 18=13.4          |
|             |               | 6    | 2402/175=13.7         | 180/ 11=16.4<br>*@I | 186/ 13=14.3           | 240/ 18=13.3*@D       |
|             |               | 7    | 2487/184=13.5         | 190/ 13=14.6<br>@I  | 197/ 14=14.1           | 222/ 15=14.8<br>**@@I |
|             |               | 3    | 2547/182=14.0         | 257/ 18=14.3        | 204/ 15=13.6           | 216/ 16=13.5          |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

8 AND \* = TWO-TAILED TEST ! AND  $\omega = ONE-TAILED TEST$ 

ONE !, &, D, \* = SIGNIFICANT AT P LESS THAN 0.05 TWO !, &, D, \* = SIGNIFICANT AT P LESS THAN 0.01

\*, D SIGNIFICANTLY DIFFERENT FROM CONTROL

#### COMPOUND 46

#### AVERAGE PREIMPLANTATION LOSSES PER PREGNANT FEMALE

| LOG ARITH<br>DOSE DOSE WEEK | HISTORICAL<br>CONTFOL | NEGATIVE<br>CONTROL  | DOSE LEVEL<br>2500. MG/KG | POSITIVE<br>CONTROL       |
|-----------------------------|-----------------------|----------------------|---------------------------|---------------------------|
| . 1                         | 264/154= 1.7          | 18/ 9= 2.0           | 16/ 8= 2.0                | 78/ 14= 5.6*3I<br>**aaI   |
| 2                           | 284/169= 1.7          | 42/ 9= 4.7<br>*abi   | 15/ 10= 1.5@D             | 104/ 9=11.6*aaI<br>**aaI  |
| 3                           | 262/168= 1.6          | 18/ 10= 1.8          | 34/ 10= 3.4               | 89/ 12= 7.4**@@I<br>**@@I |
| 4                           | 260/189= 1.4          | 27/ 14= 1.9          | 21/ 12= 1.8               | 29/ 5= 5.8<br>@τ          |
| . 5                         | 253/175= 1.5          | 13/ 10= 1.3          | 16/ 8= 2.0                | 65/ 18= 3.6*๗ปั<br>**๗ปั  |
| 6                           | 280/175= 1.6          | 48/ 11= 4.4<br>**@@I | 25/ 13= 1.9<br>@I         | 42/ 18= 2.3               |
| 7                           | 222/184= 1.2          | 17/ 13= 1.3          | 32/ 14= 2.3               | 27/ 15= 1.8<br>*ai        |
| 8                           | 370/182= 2.0          | 38/ 18= 2.1          | 31/ 15= 2.1               | 16/ 16= 1.0<br>ab         |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

 $\mathcal{E}$  AND \* = TWO-TAILED TEST ! AND D = ONE-TAILED TEST

ONE !. &. . \* = SIGNIFICANT AT P LESS THAN 0.05 TWO !,  $\delta$ , d, \* = SIGNIFICANT AT P LESS THAN 0.01

\*, D SIGNIFICANTLY DIFFERENT FROM CONTROL

S,! SIGNIFICANT RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE V

COMPOUND 46

STUDY ACUTE

#### AVERAGE RESORPTIONS (DEAD IMPLANTS) PER PREGNANT FEMALE

| LOG<br>DOSE | ARITH<br>DOSE | WEEK | HISTORICAI<br>CONTROL | NEGATIVE<br>CONTROL  | DOSE LEVEL<br>2500. MG/KG | POSITIVE<br>CONTROL        |
|-------------|---------------|------|-----------------------|----------------------|---------------------------|----------------------------|
|             |               | 1    | 52/154=0.34           | 4/ 9=0.45            | 11/ 8=1.380I<br>**00I     | 112/ 14=8.00**àðI<br>**ððI |
|             |               | 2    | 85/169=0.51           | 7/ 9=0.78            | 7/-10=0.70                | 39/ 9=4.34**@@I<br>**@@I   |
|             |               | 3    | 92/168=0.55           | 13/ 10=1.30<br>**@@I | 5/ 10=0.50**aaD           | 70/ 12=5.84**@dI<br>**@dI  |
|             |               | 4    | 93/189=0.50           | 8/ 14=0.58           | 5/ 12=0.42                | 28/ 5=5.60*@I<br>*@@I      |
|             |               | 5    | 104/175=0.60          | 6/ 10=0.60           | 6/ 8=0.75                 | 89/ 18=4.95**@@I<br>**@@I  |
|             |               | 6    | 93/175=0.54           | 10/ 11=0.91          | 8/ 13=0.62                | 23/ 18=1.28<br>*@I         |
|             |               | 7    | 90/134=0.49           | 6/ 13=0.47           | 5/ 14=0.36                | 14/ 15=0.94                |
|             |               | 8    | 96/182=0.53           | 12/ 18=0.67          | 8/ 15=0.54                | 13/ 16=0.82<br>ar          |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

& AND \* = TWO-TAILED TEST ! AND D = ONE-TAILED TEST

ONE !,8,0,\* = SIGNIFICANT AT P LESS THAN 0.05 TWO !,8,0,\* = SIGNIFICANT AT P LESS THAN 0.01

\*, d SIGNIFICANTLY DIFFERENT FROM CONTROL

E,! SIGNIFICANT RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE VI
COMPOUND 46 STUDY ACUTE

#### PROPORTION OF FEMALES WITH ONE OR MORE DEAD IMPLANTATIONS

| LOG ARITH<br>DOSE DOSE | WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL<br>2500. MG/KG | POSITIVE<br>CONTROL |
|------------------------|------|-----------------------|---------------------|---------------------------|---------------------|
|                        | 1    | 39/154=0.26           | 4/ 9=0.45           | 7/ 8=0.39<br>**           | 14/ 14=1.00**       |
|                        | 2    | 58/169=0.35           | 4/ 9=0.45           | 5/ 10=0.50                | 9/ 9=1.00**<br>**   |
|                        | 3    | 57/168=0.34           | 10/ 10=1.00         | 3/ 10=0.30**              | 12/ 12=1.00         |
|                        | 4    | 71/189=0.38           | 7/ 14=0.50          | 4/ 12=0.34                | 4/ 5=0.80           |
|                        | 5    | 66/175=0.38           | 3/ 10=0.30          | 3/ 8=0.38                 | 16/ 18=0.89**       |
|                        | 6    | 65/175=0.38           | 5/ 11=0.46          | 5/ 13=0.39                | 11/ 18=0.62         |
|                        | 7    | 65/184=0.36           | 4/ 13=0.31          | 4/ 14=0.29                | 7/ 15=0.47          |
|                        | 8    | 69/182=0.38           | 7/ 18=0.39          | 6/ 15=0.40                | 10/ 16=0.63         |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

<sup>\*</sup> SIGNIFICANTLY DIFFERENT FROM CONTROL

<sup>!</sup> SIGNIFICANT LINEAR RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE VII
COMPOUND 46 STUDY ACUTE

#### PORPORTION OF FEMALES WITH TWO OR MORE DEAD IMPLANTATIONS

| LOG ARITH<br>DOSE DOSE | WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL 2500. MG/KG | POSITIVE<br>CONTROL |
|------------------------|------|-----------------------|---------------------|------------------------|---------------------|
|                        | 1    | 8/154=0.06            | 0/ 9=0.0            | 1/ 8=0.13              | 14/ 14=1.00**       |
|                        | 2    | 22/169=0.14           | 2/ 9=0.23           | 1/.10=0.10             | 6/ 9=0.67<br>**     |
| ,                      | 3    | 26/168=0.16           | 3/ 10=0.30          | 1/ 10=0.10             | 12/ 12-1.00**       |
|                        | 4    | 16/189=0.09           | 1/ 14=0.08          | 1/ 12=0.09             | 4/ 5=0.80**<br>**   |
|                        | 5    | 24/175=0.14           | 2/ 10=0.20          | 1/ 8=0.13              | 15/ 18=0.84**       |
|                        | 6    | 21/175=0.12           | 3/ 11=0.28          | 2/ 13=0.16             | 7/ 18=0.39          |
|                        | 7    | 20/184=0.11           | 1/ 13=0.08          | 1/ 14=0.08             | 4/ 15=0.27          |
|                        | 8    | 22/182=0.13           | 3/ 18=0.17          | 1/ 15=0.07             | 3/ 16=0.19          |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

<sup>\*</sup> SIGNIFICANTLY DIFFERENT FROM CONTROL

<sup>!</sup> SIGNIFICANT LINEAR RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE VIII
COMPOUND 46 STUDY ACUTE

#### DEAD IMPLANTS / TOTAL IMPLANTS

| WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL  | DOSE LEVEL<br>2500. MG/KG | POSITIVE<br>CONTROL        |
|------|-----------------------|----------------------|---------------------------|----------------------------|
| 1    | 52/1923=0.03          | 4/115=0.03           | 11/ 99=0.11<br>*aI        | 112/127=0.88**@aI<br>**@aI |
| 2    | 85/2053=0.04          | 7/102=0.07           | 7/125=0.06                | 39/ 52=0.75**aaI<br>**aaI  |
| 3    | 92/2040=0.05          | 13/132=0.10<br>**@@I | 5/120=0.04**aaD           | 70/ 71=0.99**aaI<br>**aaI  |
| 4    | 93/2271=0.04          | 8/181=0.04           | 5/133=0.04                | 28/ 32=0.88**aaI<br>**aaI  |
| 5    | 104/2099=0.05         | 6/122=0.05           | 6/ 96=0.06                | 89/176=0.51**aaI<br>**aaI  |
| 6    | 93/2122=0.04          | 10/132=0.08          | 8/161=0.05                | 23/198=0.12<br>**aa1       |
| 7    | 90/2265=0.04          | 6/173=0.03           | 5/165=0.03                | 14/195=0.07                |
| 8    | 96/2177=0.04          | 12/219=0.05          | 8/173=0.05                | 13/200=0.06                |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT DIFFERENCES USING THE HISTORICAL CONTROL GROUP

\* = TWO-TAILED TEST a = ONE-TAILED TEST

TABLE I

COMPOUND 46

STUDY SUBACUTE

#### FERTILITY INDEX

| LOG<br>DOSE | ARITH<br>DOSE | WEEK | HISTORICAL CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL<br>1100. MG/KG |
|-------------|---------------|------|--------------------|---------------------|---------------------------|
|             |               | 1    | 148/219=0.68       | 17/ 20=0.85         | 12/ 20=0.60               |
|             |               | 2    | 166/220=0.76       | 16/ 20=0.80         | 13/ -20=0.65              |
|             |               | 3    | 171/219=0.79       | 16/ 20=0.80         | 10/ 20=0.50*              |
|             |               | 4    | 170/214=0.80       | 16/ 20=0.80         | 18/ 20=0.90               |
|             |               | 5    | 171/217=0.79       | 16/ 20=0.80         | 16/ 20=0.80               |
|             |               | 6    | 186/219=0.85       | 16/ 20=0,80         | 14/ 20=0.70               |
|             |               | 7    | 186/215=0.87       | 18/ 20=0.90         | 16/ 20=0.80               |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

- \* SIGNIFICANTLY DIFFERENT FROM CONTROL
- ! SIGNIFICANT LINEAR RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE II

COMPOUND 46

STUDY SUBACUTE

#### AVERAGE NUMBER OF IMPLANTATIONS PER PREGNANT PEMALE

|   | ARITH<br>DOSE |   |               | NEGATIVE<br>CONTROL | DOSE LEVEL<br>1100. MG/KG |
|---|---------------|---|---------------|---------------------|---------------------------|
|   |               | 1 | 1792/148=12.1 | 214/ 17=12.6        | 144/ 12=12.0              |
|   |               | 2 | 2086/166=12.6 | 187/ 16=11.7        | 168/ 13=12.9              |
|   |               | 3 | 2056/171=12.0 | 198/ 16=12.4        | 118/ 10=11.8              |
|   |               | 4 | 1998/170=11.8 | 185/ 16=11.6        | 215/ 18=11.9              |
| , |               | 5 | 2079/171=12.2 | 204/ 16=12.8        | 207/ 16=12.9<br>*ai       |
|   |               | 6 | 2237/186=12.0 | 196/ 16=12.3        | 179/ 14=12.8              |
|   |               | 7 | 2173/186=11.7 | 209/ 18=11.6        | 202/ 16=12.6              |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

8 AND \* = TWO-TAILED TEST
! AND @ = ONE-TAILED TEST

ONE !, &, &, \* = SIGNIFICANT AT P LESS THAN 0.05 TWO !, &, &, \* = SIGNIFICANT AT P LESS THAN 0.01

\*, D SIGNIFICANTLY DIFFERENT FROM CONTROL 8,! SIGNIFICANT RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE III
COMPOUND 46 STUDY SUPACUTE

#### AVERAGE CORPORA LUTEA PER PREGNANT FEMALE

|   |   | HISTOPICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL<br>1100. MG/KG |
|---|---|-----------------------|---------------------|---------------------------|
|   | 1 | 2050/148=13.9         | 245/ 17=14.4        | 169/ 12=14.1              |
|   | 2 | 2342/166=14.1         | 242/ 16=15.1        | 195/-13=15.0              |
| , | 3 | 2329/171=13.6         | 234/ 16=14.6        | 158/ 10=15.8<br>*ໝ່ວໄ     |
|   | 4 | 2197/170=12.9         | 230/ 16=14.4        | 262/ 18=14.6<br>**@@I     |
|   | 5 | 2333/171=13.6         | 223/ 16=13.9        | 226/ 16=14.1              |
|   | б | 2549/186=13.7         | 233/ 16=14.6        | 200/ 14=14.3              |
|   | 7 | 2505/186=13.5         | 260/ 18=14.4<br>@I  |                           |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

E AND \* = TWO-TAILED TEST
! AND @ = ONE-TAILED TEST

ONE !,  $\mathcal{E}$ ,  $\mathcal{D}$ , \* = SIGNIFICANT AT P LESS THAN 0.05 TWO !,  $\mathcal{E}$ ,  $\mathcal{D}$ , \* = SIGNIFICANT AT P LESS THAN 0.01

\*, J SIGNIFICANTLY DIFFERENT FROM CONTROL

8,! SIGNIFICANT RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE IV

COMPOUND 46 STUDY SUBACUTE

#### AVERAGE PREIMPLANTATION LOSSES PER PREGNANT FEMALE

| LOG ARITH | WEEK | HISTORICAL CONTROL | NEGATIVE<br>CONTROL  | DOSE LEVEL<br>1100. MG/KG |
|-----------|------|--------------------|----------------------|---------------------------|
|           | . 1  | 258/148= 1.7       | 31/ 17= 1.8          | 25/ 12= 2.1               |
|           | 2    | 256/166= 1.5       | 55/ 16= 3.4<br>**30I | 27/ 13= 2.1               |
|           | 3    | 273/171= 1.6       | 36/ 16= 2.3          | 40/ 10= 4.0@I<br>**@@I    |
|           | 4    | 199/170= 1.2       | 45/ 16= 2.8<br>*@I   | 47/ 18= 2.6<br>**@@I      |
|           | 5    | 254/171= 1.5       | 19/ 16= 1.2          | 19/ 16= 1.2               |
|           | 6    | 312/186= 1.7       | 37/ 16= 2.3<br>@I    | 21/ 14= 1.5               |
|           | 7    | 332/186= 1.8       | 51/ 18= 2.8          | 53/ 16= 3.3<br>**@@I      |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

& AND \* = TWO-TAILED TEST ! AND @ = ONE-TAILED TEST

ONE !,  $\varepsilon$ ,  $\tilde{\omega}$ , \* = SIGNIFICANT AT P LESS THAN 0.05 TWO !,  $\varepsilon$ ,  $\tilde{\omega}$ , \* = SIGNIFICANT AT P LESS THAN 0.01

\*, @ SIGNIFICANTLY DIFFERENT FROM CONTROL S,! SIGNIFICANT RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

COMPOUND 46

STUDY SUBACUTE

# AVERAGE RESORPTIONS (DEAD IMPLANTS) PER PREGNANT FEMALE

| LOG<br>DOSE | ARITH<br>DOSE | WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL<br>1100. MG/KG |
|-------------|---------------|------|-----------------------|---------------------|---------------------------|
|             |               | 1    | 70/148=0.48           | 9/ 17=0.53          | 7/ 12=0.59                |
|             |               | 2    | 95/166=0.58           | 14/ 16=0.88         | 9/-13=0.70                |
|             |               | 3    | 106/171=0.62          | 13/ 16=0.82<br>ai   | 6/ 10=0.60                |
|             |               | 4    | 93/176=0.55           | 8/ 16=0.50          | 10/ 18=0.56               |
|             |               | 5    | 110/171=0.65          | 9/ 16=0.57          | 10/ 16=0.63               |
|             |               | 6    | 101/186=0.55          | 6/ 16=0.38          | 13/ 14=0.93               |
|             |               | 7    | 127/186=0.69          | 11/ 18=0.62         | 5/ 16=0.32<br>@p          |

SYMBOLS ON FIRST LINE DENCTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

8 AND \* = TRO-TAILED TEST ! AND D = ONE-TAILED TEST

ONE !,  $\varepsilon$ ,  $\omega$ , \* = SIGNIFICANT AT P LESS THAN 0.05 THO !,  $\varepsilon$ ,  $\omega$ , \* = SIGNIFICANT AT P LESS THAN 0.01

\*, d SIGNIFICANTLY DIFFERENT FROM CONTROL

6. ! SIGNIFICANT RELATIONSHIP WITH ARITH OR LOG DOSE (HFADING OF COLUMN)

TABLE VI COMPOUND 46 STUDY SUBACUTE

PROPORTION OF FEMALES WITH ONE OR MORE DEAD IMPLANTATIONS

|                        |      |                       | TOTOTION OF FI      | EMALES WITH ONE OR MORE DEAD IMPLANTATIONS |
|------------------------|------|-----------------------|---------------------|--------------------------------------------|
| LOG ARITH<br>DOSE DOSE | WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL 1100. MG/KG                     |
|                        | 1    | 49/148=0.34           | 8/ 17=0.48          | 6/ 12=0.50                                 |
|                        | 2    | 58/166=0.35           | 9/ 16=0.57          | 7/ 13=0.54                                 |
|                        | 3    | 62/171=0.37           | 11/ 16=0.69         | 4/ 10=0.40                                 |
|                        | 4    | 64/170=0.38           | 5/ 16=0.32          | 5/ 18=0.28                                 |
|                        | 5    | 75/171=0.44           | 4/ 16=0.25          | 7/ 16=0.44                                 |
|                        | 6    | 70/186=0.38           | 6/ 16=0.38          | 7/1u=0.50                                  |
|                        | 7    | 68/186=0.37           | 8/ 18=0.45          | 3/ 16=0.19                                 |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING

ONE !, \* = SIGNIFICANT AT P LESS THAN 0.05 TWO !,\* = SIGNIFICANT AT P LESS THAN 0.01

<sup>\*</sup> SIGNIFICANTLY DIFFERENT FROM CONTROL

<sup>!</sup> SIGNIFICANT LINEAR RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE VII
COMPOUND 46 STUDY SUBACUTE

#### PORPORTION OF FEMALES WITH TWO OR MORE DEAD IMPLANTATIONS

| LOG<br>DOSE | ARITH<br>DOSE | WEEK | HISTORICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL<br>1100. MG/KG |
|-------------|---------------|------|-----------------------|---------------------|---------------------------|
|             |               | 1    | 16/148=0.11           | 1/ 17=0.06          | 1/ 12=0.09                |
|             |               | 2    | 18/166=0.11           | 5/ 16=0.32<br>*     | 2/.13=0.16                |
|             |               | 3    | 27/171=0.16           | 2/ 16=0.13          | 1/ 10=0.10                |
|             |               | 4    | 20/170=0.12           | 3/ 16=0.19          | 4/ 18=0.23                |
|             |               | 5    | 27/171=0.16           | 2/ 16=0.13          | 2/ 16=0.13                |
|             |               | 6    | 24/186=0.13           | 0/ 16=0.0           | 3/ 14=0.22                |
|             |               | 7    | 32/186=0.18           | 2/ 18=0.12          | 2/ 16=0.13                |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT RELATIONSHIPS AND DIFFERENCES USING THE HISTORICAL CONTROL GROUP

ONE !,\* = SIGNIFICANT AT P LESS THAN 0.05
TWO !,\* = SIGNIFICANT AT P LESS THAN 0.01

<sup>\*</sup> SIGNIFICANTLY DIFFERENT FROM CONTROL

<sup>!</sup> SIGNIFICANT LINEAR RELATIONSHIP WITH ARITH OR LOG DOSE (HEADING OF COLUMN)

TABLE VIII
COMPOUND 46 STUDY SUBACUTE

#### DEAD IMPLANTS / TOTAL IMPLANTS

| WEEK | HISTOFICAL<br>CONTROL | NEGATIVE<br>CONTROL | DOSE LEVEL<br>1100. MG/KG |
|------|-----------------------|---------------------|---------------------------|
| 1    | 70/1792=0.04          | 9/214=0.04          | 7/144=0.05                |
| 2    | 95/2086=0.05          | 14/187=0.07<br>@I   | 9/168=0.05                |
| 3    | 106/2056=0.05         | 13/198=0.07         | 6/118=0.05                |
| 4    | 93/1998=0.05          | 8/185=0.04          | 10/215=0.05               |
| 5    | 110/2079=0.05         | 9/204=0.04          | 10/207=0.05               |
| 6    | 101/2237=0.05         | 6/196=0.03          | 13/179=0.07               |
| 7    | 127/2173=0.06         | 11/209=0.05         | 5/202=0.02<br>*a0         |

SYMBOLS ON FIRST LINE DENOTE SIGNIFICANT DIFFERENCES USING THE NEGATIVE CONTROL GROUP

SYMBOLS ON SECOND LINE DENOTE SIGNIFICANT DIFFERENCES USING THE HISTORICAL CONTROL GROUP

\* = TWU-TAILED TEST @ = ONE-TAILED TEST

ONE \*, a = SIGNIFICANT AT P LESS THAN 0.05
Two \*, a = SIGNIFICANT AT P LESS THAN 0.01

\*, 3 SIGNIFICANTLY DIFFERENT FROM CONTROL

#### **APPENDICES**

### II. MATERIALS AND METHODS

## A. Animal Husbandry

1. Animals (Rats and Mice)

Ten to twelve week old rats (280 to 350 g) and male mice (25 to 30 g) were fed a commercial 4% fat diet and water ad libitum until they were put on experiment. Flow Laboratories random-bred, closed colony, Sprague-Dawley CD strain rats were used in the cytogenetic studies. Flow Laboratories ICR male mice were employed in the Host-Mediated Assay.

#### 2. Preparation of Diet

A commercial 4% fat diet was fed to all animals. Periodic tests to verify the absence of coliforms, <u>Salmonella</u> and <u>Pseudomonas</u> sp. were performed.

### 3. Husbandry

Animals were held in quarantine for 4-11 days. Mice were housed five to a cage and rats one to five to a cage. Animals were identified by ear punch. Sanitary cages and bedding were used, and changed two times per week, at which time water containers were cleaned, sanitized and filled. Once a week, cages were repositioned on racks; racks were repositioned within rooms monthly. Personnel handling animals or working within animal facilities wore head coverings and face masks, as well as suitable garments. Individuals with respiratory or other overt infections were excluded from the animal facilities.

#### B. Dosage Determination

1. Acute  $LD_{50}$  and  $LD_{5}$  Determination Since the compounds proposed for testing are included in



the food additive regulations as "generally recognized as safe" (GRAS), it was expected that a large number of them would be sufficiently non-toxic so that determination of a  $LD_{50}$  or a  $LD_{5}$  would be of no practical value. In fact, this has been our experience with previously tested compounds from this list. In the case of these relatively non-toxic compounds, attempts were made to assure that the amounts to be administered would not affect the animals by means (mechanical, physical, etc.) related to their bulk rather than to their toxicity. In the cases of certain compounds where a  $LD_{50}$  or a  $LD_{5}$  could not be determined, an exceedingly high concentration, 5 g/kg, was employed and accepted as the  $LD_{5}$  level. In cases where the toxicity was high enough to allow determination of a  $LD_{5}$ , the following protocol was used.

Thirty rats of the strain chosen for studies described below and of approximately the age and weight specified were assigned at random to six groups. Each group was then given, using the chosen route of administration, one of a series of dosages of the test compound following a logarithmic dosage scheme. The series of dosages were derived from a consideration of whatever toxicity information was available for the particular test compound. The objective in selecting dosages was to choose values which would cause mortalities between 10% and 90%.

When information was inadequate to derive a suitable series of dosages, five rats were used to identify the proper range. Each of these was given one of a widely spaced (differing by 10X) series of doses. This was confidently expected to suffice for derivation of the series of dosages to be used in the  $LD_{50}$  determination.



The mortalities observed when the series of dosages were given to the 30 rats were then subjected to a probit analysis and calculation of  $\mathrm{LD}_{50}$ ,  $\mathrm{LD}_{5}$ , slope and confidence limits by the method of Litchfield and Wilcoxon. The highest dose level used was either a finite  $\mathrm{LD}_{5}$  or 5000 mg/kg. The intermediate level used was either 1/10 of the finite  $\mathrm{LD}_{5}$  or 2500 mg/kg. The low level used was either 1/100 of the finite  $\mathrm{LD}_{5}$  or 30 mg/kg.

#### 2. Subacute Studies

Subacute doses were identical to those used in the acute studies. Each subacute study animal was given the acute dosage once a day for each of five consecutive days (24 hours apart).

## C. <u>Mutagenicity Testing Protocols</u>

#### 1. Host-Mediated Assay

Flow Laboratories ICR random-bred male mice were used in this study. In the acute and subacute studies ten animals, 25-30 g each, were employed at each dose level. Solvent and positive controls were run at all times. The positive control (dimethyl nitrosamine) was run by the acute system only at a dose of 100 mg/kg for Salmonella. For yeast, ethyl methane sulfonate (EMS) intramuscularly injected at a dose of 350 mg/kg was used. The solvents used and the toxicity data are presented in the Results and Discussion Section of the report.

The indicator organisms used in this study were: (1) two histidine auxotrophs (his G-46, TA-1530) of <u>Salmonella typhimurium</u>, and (2) a diploid strain (D-3) of <u>Saccharomyces cerevisiae</u>. The induction of reverse mutation was determined with the <u>Salmonella</u>; mitotic recombination was determined with yeast. Chemicals were evaluated directly by <u>in vitro</u> bacterial and yeast studies prior to, or concurrent with, the studies in



mice. Only animals on the subacute studies were not fed the evening prior to compound administration. The Salmonella were carried in tryptone yeast extract gel, transferred weekly. They were transferred to tryptone yeast extract broth 48 hours before use: they were transferred a second time from broth to broth 24 hours prior to use, and again 8 hours before use. The mouse inoculum was prepared by transferring 4 ml of the 8-hour broth culture to 50 ml broth bottles which had been prewarmed at 37°C. Exponential log-phase organisms were inoculated intraperitoneally into the mice approximately 2-1/2 hours later when the appropriate density indicating 3.0  $\times$   $10^8$ cells/ml was reached. The Saccharomyces was carried in yeast complete agar. The inoculum was prepared by harvesting the organisms from the surface of the plates with sterile saline. The cells were washed three times with sterile saline and suspended in a concentration of 5.0 x  $10^8$  cells/ml. Two ml of the suspension was inoculated into each mouse intraperitoneally. Total plate counts on <u>Salmonella</u> were on tryptone yeast extract and for Saccharomyces on yeast complete medium.

#### a. Acute study

Three dosage levels (usage, intermediate [determined as discussed previously], and LD $_5$ ) were administered orally by intubation to ten mice. Positive controls and negative vehicle controls were included in each study. All animals received 2 ml of the indicator organism intraperitoneally. Each ml contained 3.0 x  $10^8$  cells for Salmonella and 5.0 x  $10^8$  cells for Saccharomyces. Three hours later, each animal was killed and 2 ml of sterile saline was introduced intraperitoneally. As much fluid as possible was then aseptically removed from the peritoneal cavity. Dilution blanks for bacteria containing 4.5 ml of serile saline were prepared in advance. Tenfold serial



dilutions were made of each peritoneal exudate (0.5 ml exudate + 4.5 ml saline) yielding a concentration series from  $10^0$  (undiluted peritoneal exudate) through  $10^{-7}$ . For enumeration of total bacterial counts, the  $10^{-6}$  and  $10^{-7}$  dijutions were plated on tryptone yeast extract agar, 3 plates/sample, 0.2 ml sample/ plate. Each sample was spread over the surface of the plate using a bent glass rod immersed in 95% ethanol and flamed just prior to use. In plating for the total mutant counts on minimal agar, the  $10^{0}$  dilution was used, 0.2 ml being plated on each of 5 plates. The plating procedure was identical to that followed for the tryptone yeast extract agar plates. All plates were incubated at 37°C, tryptone yeast extract agar plates for 18 hours and minimal agar plates for 40 hours. For yeast mitotic recombination, dilution blanks containing 4.5 ml of sterile saline were prepared in advance. Tenfold serial dilutions were made of each sample yielding a series from  $10^{0}$  to  $10^{-5}$ . Samples of 0.1 ml of the  $10^{-5}$ ,  $10^{-4}$ , and  $10^{-3}$  dilutions were removed and plated on complete medium (10 plates each). All plates were incubated at  $30^{\circ}$ C for 40 hours. The  $10^{-5}$ dilutions were used to determine total populations and the  $10^{-4}$  and  $10^{-3}$  plates were examined after an additional 40 hours at 4°C for red sectors indicating a mutation. Bacterial scoring was calculated as follows:

Total mutants on 5 plates x appropriate exponent = CFU/ml (CFU is Colony Forming Units) of sample plated CFU/ml x one/dilution factor  $(10^0 - 10^{-7}) = CFU/ml$  in undiluted exudate. The mutation frequency (MF) calculated for each sample was:

MF = total mutant cells total population

 $MFt/MFc = \frac{MF \text{ of experimental sample}}{MF \text{ of control sample}}$ 

(MFt/MFc = 1.00 for control sample)



Yeast mitotic recombinants (presumptive <u>ade 2</u>, <u>his 8</u> homozygotes) were seen as red colonies or as red sectors on a normally white yeast colony. The plates (from  $10^{-4}$  and  $10^{-3}$  dilutions) were scanned under the 10X lens of a dissecting scope to enumerate the red colonies and sectors. Population determinations were made from the  $10^{-5}$  dilution plates. A recombinant frequency (RF) was calculated:

RF = total recombinants counted total number colonies screened

#### b. Subacute study

Similar groups of animals at each dose level received five oral doses of the test compound 24 hours apart. Within 30 minutes after the last dosing, the animals were inoculated with the test organism and handled in the same fashion as those in the acute study.

## c. <u>In vitro</u> study

Cultures of <u>S</u>. <u>typhimurium</u> histidine auxotrophs

(G-46 and TA-1530) were plated on appropriate media. The test compound was then added to the plate, either in the form of a microdrop of solution (0.01 to 0.25 ml) applied to a small filter paper disc resting on the agar or a small crystal applied directly to the agar. Tenfold serial dilutions of the culture were employed and plated so as not to miss the optimum cell density for mutant growth. Mutant colonies were observed and scored. Strain D-3 <u>Saccharomyces</u> cells at proper dilutions were shaken with the test compound, diluted, and plated at 50% survival level or above (see HMA Supplementary Materials and Methods). Red sectors were then scored and the frequency calculated after suitable incubation. Negative and positive controls were run concurrently. The positive control was EMS for <u>Salmonella</u> and <u>Saccharomyces</u>. The <u>in vitro Salmonella</u> tests were reported



as (+) or (-) or questionable; the <u>in vitro Saccharomyces</u> tests were reported as sample concentrations, percent survival, and recombinants/ $10^5$  survivors. For the <u>Saccharomyces</u> a 50% survival level, e.g., an arbitrary 5.0% w/v test level, was used when no LD<sub>50</sub> was determinable.

#### 2. Cytogenetic Studies

#### a. <u>In vivo</u> study

Ten to twelve week old, male, albino rats obtained from a closed colony (random-bred) were used. A total of 59 animals in the acute study and 18 animals in the subacute study was used, as illustrated in the following protocol.

## Number of Animals Used

#### Acute Study

| Treatment          | Time Kille | d After Admir | After Administration |  |  |
|--------------------|------------|---------------|----------------------|--|--|
|                    | 6 Hours    | 24 Hours      | 48 Hours             |  |  |
| High Level         | 5          | 5             | 5                    |  |  |
| Intermediate Level | 5          | 5             | 5                    |  |  |
| Low Level          | 5          | 5             | 5                    |  |  |
| Positive Control   | 0          | 0             | 5                    |  |  |
| Negative Control   | 3          | 3             | 3                    |  |  |

#### Subacute Study

Five doses 24 hours apart; animals killed 6 hours after last dose.

| Treatment          | Killed After Administration |
|--------------------|-----------------------------|
| High Level         | 5                           |
| Intermediate Level | 5                           |
| Low Level          | 5                           |
| Negative Control   | 3                           |

All animals were dosed by gastric intubation.

Four hours after the last compound administration, and two hours prior to killing, each animal was given 4 mg/kg of colcemid intra-



peritoneally in order to arrest the bone marrow cells in C-mitosis. Animals were killed by using CO<sub>2</sub>, and the adhering muscle and epiphysis of one femur were removed. The marrow "plug" was removed with a tuberculin syringe and an 18 gauge needle, aspirated into 5 ml of Hanks' balanced salt solution (BSS) in a test tube and capped. The specimens were centrifuged at 1,500 RPM in a table-top centrifuge for 5 minutes, decanted, and 2 ml of hypotonic 0.5% KCl solution was added with gentle agitation to resuspended the cells. The specimens were then placed in a 37°C water bath for 20 minutes in order to swell the cells. Following centrifugation for 5 minutes at 1,500 RPM, the supernatant was decanted and 2 ml of fixative (3:1 absolute methanol:glacial acetic acid) was added. The cells were resuspended in the fixative with gentle agitation, capped, and placed at 4°C for 30 minutes. The specimens were again centrifuged, decanted, 2 ml of prepared fixative was added, and the cells were resuspended and placed at 4°C overnight.

The following day the specimens were again centrifuged, decanted and 0.3 - 0.6 ml of freshly prepared fixative was added to obtain a suitable density. The cells were resuspended and 2 - 3 drops of the suspension were allowed to drop onto a clean, dry slide held at  $15^{\circ}$  from the horizontal. As the suspension flowed to the edge of the slide, it was ignited by an alcohol burner and allowed to flame. Following ignition, the slides were allowed to dry at room temperature overnight. Duplicate slides were prepared. The slides were stained using a 5% Giemsa solution (Giemsa buffer pH 7.2) for 20 minutes, rinsed in acetone, 1:1 acetone:xylene, and placed in fresh xylene for 30 minutes. The slides were then mounted using Permount (Fisher Scientific) and 24 x 50 mm coverglasses. The coverglasses were selected to be 0.17 mm  $\pm 0.005$  mm in thickness by use of a coverglass micrometer. The preparations



were examined using Leitz Ortholux I & II microscopes with brightfield optics and xenon light sources. These specimens were scanned with 10X and 24X objectives and suitable metaphase spreads that were countable were then examined critically using 40X, 63X or 100X oil immersion flatfield apochromatic objectives. Oculars were either 12X or 16X widefield periplanatics and the tube magnification either 1X or 1.25X. The filters used were either a didymium (BG20) or a Schott IL570 m $\mu$  interference filter.

The chromosomes of each cell were counted and only diploid cells were analyzed. They were scored for chromatid gaps and breaks, chromosome gaps and breaks, reunions, cells with greater than ten aberrations, polyploidy, pulverization, and any other chromosomal aberrations which were observed. They were recorded on the currently used forms and expressed as percentages on the summary sheets. Fifty metaphase spreads were scored per animal. Mitotic indices were obtained by counting at least 500 cells and the ratio of the number of cells in mitosis/the number of cells observed was expressed as the mitotic index.

Positive controls in the acute study consisted of animals which had been given the known mutagen Triethylene Melamine (TEM) administered intraperitoneally at a level of 0.30 mg/kg. Negative controls on the acute and subacute studies consisted of the vehicle in which the compound was administered. The dosage levels, solvents and toxicity data are included in the Results and Discussion Section of the report.

## b. <u>In vitro</u> study

Human embryonic lung cultures (WI-38) which were negative for adventitious agents (viruses, mycoplasma) which may interfere



were used. These cells were employed at passage level 19. The cells had been transferred using 0.025% trypsin and planted in 32 oz. prescription bottles containing 40 ml of tissue culture medium. When growth was approximately 95% confluent the cells were removed from the glass using trypsin, centrifuged, and frozen in tissue culture medium containing dimethyl sulfoxide (DMSO). Cells were frozen in vials in the vapor phase of liquid nitrogen at a concentration of 2  $\times$   $10^6$  cells/ml. When needed, the vials were removed from liquid nitrogen, quick-thawed in a 37°C water bath, washed free of DMSO, suspended in tissue culture medium (minimal essential medium [MEM] plus 1% glutamine, 200 units/ml of penicillin and 200 µg/ml of streptomycin and 15% fetal calf serum) and planted in milk dilution bottles at a concentration of 5  $\times$  10<sup>5</sup> cells/ml. The test compound was added at three dose levels using three bottles for each level, 24 hours after planting. The dose levels required a preliminary determination of a tissue culture toxicity. This was accomplished by adding logarithmic doses of the compound in saline to a series of tubes containing 5 x  $10^5$  cells/ml which were almost confluent. The cells were examined at 24, 48, and 72 hours. Any cytopathic effect (CPE) or inhibition of mitoses was scored as toxicity. Five more closely spaced dose levels were employed within the two logarithmic dosages, the higher of which showed toxicity and the lower no effect. The solvents used and the range finding data are presented in the toxicity data report under Results and Discussion. The dose level below the lowest toxic level was employed as the high level. Logarithmic dose levels were employed for the medium and low levels.

Cells were incubated at 37°C and examined twice daily to determine when an adequate number of mitoses were present. Cells were harvested by shaking when sufficient mitoses were observed, usually 24 - 48



hours after planting, centrifuged, and fixed in absolute methanol:glacial acetic acid (3:1) for 30 minutes.

The specimens were centrifuged, decanted, and suspended in acetic acid-orcein stain (2.0%) and a drop of suspension placed on a clean dry slide. Selected coverglasses 0.17 mm in thickness were placed on the suspension and the excess stain gently expressed from the slide. The coverglasses were sealed with clear nail polish and examined immediately.

The microscopes, objectives, oculars, filters and light sources were enumerated under the metaphase description. Positive controls used were TEM (at a concentration of 0.1 mcg/ml dissolved in saline) and negative controls which consisted of the vehicle in which the test compound was dissolved, which was 0.85% saline. Data were reported on forms currently used and expressed as percentages on the anaphase summary sheets.

## 3. Dominant Lethal Assay

In this test, male and female random bred rats from a closed colony were employed. These animals were 10-12 weeks old at the time of use. Ten male rats were assigned to each of 5 groups; 3 dose levels selected as described above, a positive control (triethylene melamine) (TEM) and a negative control (solvent only). The positive control was administered intraperitoneally. Administration of the test compound was orally by intubation in both the acute study (1 dose) and in the subacute study (1 dose per day for 5 days). Following treatment, the males were sequentially mated to 2 females per week for 8 weeks (7 weeks in the subacute study). Two virgin female rats were housed with a male for 5 days (Monday through Friday). These two females were removed and housed in a cage until killed. The male was rested on Saturday and Sunday and two new females introduced to the cage on



Monday. It has been our experience that conception has taken place in more than 90% of the females by Friday and that the two day rest is beneficial to the male as regards subsequent weekly matings. Females were killed using CO<sub>2</sub>. at 14 days after separating from the male, and at necropsy the uterus was examined for deciduomata (early deaths), late fetal deaths and total implantations.

Sufficient animals were provided in our experimental design to accommodate for any reduction in the number of conceptions. Each male was mated with two females per week, and this provided for an adequate number of implantations per group per week (200 minimum) for negative controls, even if there was a fourfold reduction in fertility of implantations. Results were analyzed according to the statistical procedures described in Supplementary Materials and Methods. Corpora lutea, early fetal deaths, late fetal deaths and total implantations per uterine horn were recorded on the raw data sheets, which are submitted separately.

#### D. <u>Supplementary Materials and Methods</u>

- 1. Host-Mediated Assay <u>In Vitro</u> and Formulae
  - a. Bacterial <u>in vitro</u> plate tests

This method has been published by Ames: The Detection of Chemical Mutagens with Enteric Bacteria, in <u>Chemical Mutagens</u>; <u>Principles and Methods for Their Detection</u>, Vol. 1, Chapter 9, pp. 267-282, A. Hollaender, Editor, Plenum Press, New York (1971).

- b. <u>In vitro</u> for mitotic recombination
- (1) Strain D-3 was grown to stationary phase on complete medium agar plates at 30°C (3-4 days). Cells were rinsed from the plates and washed twice in saline and cell concentration determined spectro-



photometrically. (A standard curve previously determined for colony forming units versus % transmittance at 545 mu was easily used.)

- (2) Cells from the concentration suspension were diluted appropriately into 0.067 M Phosphate buffer pH 7.2 to provide  $5 \times 10^7$  cells/ml in a total of 25 ml.
- (3) The test chemical was first tested for 4 hours at 30°C, with shaking, at concentrations which permitted determination of the 50% survival level. Then, if not included in the first experiment, the compound was tested again only at the 50% survival level. If 50% survival level could not be determined, the arbitrary test level of 5% w/v was used.
- plated on complete agar medium for determination of total population and red sectors. Total surviving population was conveniently measured on plates of  $10^{-4}$  and  $10^{-5}$  dilutions using 0.2 ml per plate (5 plates), and sectors determined on plates of  $10^{-3}$  and  $10^{-4}$  dilutions using 0.2 ml per plate (5 plates). Plates were incubated for 2 days at 30°C followed by a holding period of 2 days at 4°C to promote color development with limited enlargement of the colonies. Red sectors were scored by systematically scanning the plates with a dissecting microscope at 10X magnification.
- (5) The frequency of red sectors can then be calculated and may be expressed conveniently as sectors per  $10^5$  survivors for comparison with untreated controls.
- (6) Ethyl Methane Sulfonate (EMS) was employed as the positive control in both <u>in vitro</u> systems.
  - c. Minimal medium (bacteria):
    Spizizen's Minimal Medium:



## 4X Salt Solution:

 $(NH_4) SO_4$ 

8.0 gm

 $K_2HPO_4$ 

56.0 gm

KH2PO4

24.0 gm

Na Citrate

4.0 gm

Mg SO,

0.8 gm

Biotin

0.004 gm

 $H_2O$ 

qs to 1 liter Sterilize by autoclaving (121°C/15 min.)

## Medium:

4X Salt Solution

:250 ml

5.0% Glucose (sterile) :100 ml (If histidine is added

at concentration of 30 mg/liter, this becomes a complete bacterial

medium.)

1.5% Bacto-agar (sterile)

:650 ml

d. Complete medium (bacteria):

Bacto-Tryptone

1.0 gm

Yeast-Extract

0.5 gm

Bacto-Agar

2.0 gm

Distilled H<sub>2</sub>O

100.0 ml

Sterilize by autoclaving (121°C for 15 minutes).

e. Complete medium (yeast):

KH2PO4

1.5 gm

MgSO<sub>4</sub>

0.5 gm

 $(NH_4)_2SO_4$ 

4.5 gm



Peptone 3.5 gm

Yeast-Extract 5.0 gm

Glucose 20.0 gm

Agar 20.0 gm

Distilled  $H_2O$  1000.0 ml

Sterilize by autoclaving (121°C for 15 minutes).

 Cytogenetics <u>In Vitro</u> Preparation of Anaphase Chromosomes (from Nichols, 1970)

"Anaphase preparations may be made by several methods. One convenient approach is to grow cells directly on coverslips in petri dishes. With human fibroblasts 400,000 cells added to a 22  $\times$  44 mm coverslip in a 50 mm petri dish grown in a 5%  ${\rm CO_2}$  atmosphere in air has proved very satisfactory. When adequate numbers of mitoses are visualized directly utilizing an inverted microscope (usually 48 to 92 hours after planting) the coverslip is transferred to absolute ethanol for 15 minutes for fixation. They are then stained with any one of a number of suitable stains (Fuelgen, May-Grunwald-Giemse, orcein) and attached to a slide with mounting media for evaluation. Anaphase preparations may also be prepared on cells grown in suspension or cells from a monolayer that have been put into suspension. In this instance the cells are centrifuged and fixed with the squash fixative. They are then suspended in the stain and a drop of the suspension put on the slide and covered with a coverslip. However, in this case, only the excess stain is gently expressed from under the coverslip and no squashing is carried out. In anaphase preparations no pretreatment with colchicine or hypotonic expansion is used and no technique for spreading the cells is used, so that the spindle and normal relationships of the chromosomes are not disturbed."



- 3. Statistical Analyses of Dominant Lethal Studies

  The following statistical analyses were employed as a means of analyzing the results of the dominant lethal studies.
  - a. The fertility index

The number of pregnant females/number of mated females with the chi-square was used to compare each treatment to the control. Armitage's trend was used for linear proportions to test whether the fertility index was linearly related to arithmetic or log dose.

b. Total number of implantations

The t-test was used to determine significant differences between average number of implantations per pregnant female for each treatment compared to the control. Regression techniques were used to determine whether the average number of implantations per female was related to the arithmetic or log dose.

- c. Total number of <u>corpora lutea</u>

  The t-test was used to determine significant differences between average number of <u>corpora lutea</u> per pregnant female for each treatment compared to the control.
  - d. Preimplantation losses

Preimplantation losses were computed for each female by subtracting the number of implantations from the number of corpora lutea. Freeman-Tukey transformation was used on the preimplantation losses for each female and then the t-test was used to compare each treatment to control. Regression technique was used to determine whether the average number of preimplantation losses per female was related to the arithmetic or log dose.



e. Dead implants

Dead implants were treated the same as pre-

implantation losses.

f. One or more dead implants

The proportion of females with one or more dead implants was computed, each treatment compared to control by chi-square test and Armitage's trend used for linear proportions to see if proportions were linearly related to either arithmetic or log dose. Also, probit regression analysis was used to determine whether the probit of the proportions was related to log dose.

g. Two or more dead implants

The proportion of females with two or more dead implants computed was treated same as above (f).

h. Dead implants per total implants

Dead implants per total implants were computed for each female and used Freeman-Tukey arc-sine transformation on data for each female; then used t-test to compare each treatment to control.

Historical control data was compiled on a continuous basis as studies were completed. In addition to comparing each treatment to control, as outlined above, each treatment was compared to a historical control.

In order to take variation between males into account, a nested model was used. An analysis of across weeks is also provided.

In addition to these tests, the distribution forms of the various parameters were tested in order to evaluate the appropriateness of some of the tests being used. Certain correlations between parameters may exist and were examined as one step to determine the appropriateness of models. If necessary, alternate test methods were implemented.



The results are presented in tabular form with the addition of historical control information. In addition to these tables, a written report of all findings is provided. As information became available from the on-going investigation of these data, it was reported and suggestions included for changes to the methods of analysis. The statistical reports give the level of significance using both a one-tailed and two-tailed test. Finally, a summary sheet for each study is provided.



# NUDET

· 1, > Females within Males within Groups

UMPTIONS:

$$eijk \sim nid(0,0^2)$$

Males are randomly drawn from infinite population

| <u>8.U.</u>     | d.f.   | <u> </u>          | MS  | E(ME)       | -     |
|-----------------|--------|-------------------|-----|-------------|-------|
| TOTAL           | 39     | 552 (Yijk - Y)2   |     |             | T     |
| GROUPS<br>MALES |        | 202 (9: 9)2       | S,* | 6-261-12020 | 15.3  |
| WITHIN GROUPS   | 18     | 222 (Tii - Ti. )2 | 5,3 | 02+202      | 5 / C |
| REMAINDER       | ا مد ا | EEZ(YUK- JUS)2    | 5,2 | 0-          |       |

#### E. References

- 1. Host-Mediated Assay
  - a. Gabridge, M.G., Denunzio, A. and Legator, M.S.:
    Nature, 221:68, 1969.
  - Gabridge, M.G., Denunzio, A. and Legator, M.S.:Science, 163:689, 1969.
  - c. Gabridge, M.G. and Legator, M.S.: Proc. Soc. Exptl. Biol. Med., 130:831, 1969.
  - d. Gabridge, M.G., Oswald, E.J. and Legator, M.S.: Mut. Res., 7:117, 1969.
  - e. Legator, M.S. and Malling, H.V.: In, <u>Environmental</u>

    <u>Chemical Mutagens</u>, A. Hollaender (Ed.), Plenum

    Publishing Corp., New York, in press.

## 2. Cytogenetics

- a. Nichols, V.W.: Personal communication.
- Legator, M.S.: In, <u>Laboratory Diagnosis of Diseases</u>
   <u>Caused by Toxic Agents</u>, F. W. Sunderman and F. W.
   Sunderman (Ed.), Warren H. Green, Inc., St. Louis,
   pp. 17-22, 1970.
- c. Hsu, T.C. and Patton, J.L.: Technical Addendum in,

  <u>Comparative Mammalian Cytogenetics</u>, K. Benirschke

  (Ed.), Springer-Verlag, New York, pp. 454-460, 1969.
- d. Legator, M.S. et al.: Cytogenetic studies in rats of cyclohexylamine, a metabolite of cyclamate. Science, 165:1139, 1969.



# Dominant Lethal

- a. Bateman, A.J.: Genet. Res. Comb., 1:381, 1960.
- b. Bateman, A.J.: Nature, 210:205, 1966.
- c. Ehling, U.H., Cumming, R.B. and Malling, H. $\dot{V}$ .:
  Mut. Res.,  $\underline{5}$ :417, 1968.
- d. Epstein, S.S. and Shafner, H.: Nature, <u>219</u>:385, 1968.



#### F. Abbreviations

- 1. mu = micron
- 2. mcg = ug = microgram
- 3. g = gram
- 4. kg = kilogram
- 5. ml = milliliter
- 6. rpm = revolutions per minute
- 7. °C = degrees centigrade
- 8. pH = power of the hydrogen ion concentration to the base 10
- 9. M = molar solution
- 10. conc. = concentration
- 11. MTD = maximum tolerated dosage = High =  $LD_5$  if determined or else exceedingly high dose, such as 5 g/kg
- 12. INT = intermediate = medium level
- 13. USE = usage level if known = low level
- 14. BSS = balanced salt solution
- 15. C-metaphase = cells arrested in metaphase, using colchine or colcemid
- 16.  $LD_{50}$  = that dosage which produced 50% mortality in the group of animals treated
- 17. LD<sub>5</sub> = that dosage which produced 5% mortality in the group of animals treated
- 18. NC = negative control
- 19. PC = positive control
- 20. AU = acute usage level (low level)
- 21. AI = acute intermediate level (medium level)



- 23. SAU = subacute usage level (low level)
- 24. SAI = subacute intermediate level (medium level)
- 25. SA  $LD_5$  = subacute  $LD_5$  level (MTD level, high level)
- 26.  $CO_2$  = carbon dioxide
- 27. DMN = Dimethyl nitrosamine
- 28. EMS = Ethyl methane sulfonate
- 29. TEM = Triethylene melamine
- 30. DMSO = Dimethyl sulfoxide
- 31. MEM = minimal essential medium (Eagle's)
- 32. CPE = cytopathic effect
- 33. his = histidine marker
- 34. D-3 = mitotic recombinant strain of <u>Saccharomyces</u>
- 35. mf = mean mutant frequency
- 36. MFt/MFc = mean mutant frequency of the test compound group compared to mean mutant frequency of the negative control group
- 37. CFU = colony forming units
- 38. WI-38 = code name for a strain of human embryonic lung tissue culture cells
- 39. Rec x  $10^5$  = mitotic recombinants x  $10^5$
- 40. Mean B/A = mean frequency
- 41. tot. scr. = total scored
- 42. tot. = total
- 43.  $\chi^2$  = a test of variation in the data from the computed regression line tested in these studies at the 5% level
- 44. Aber. = aberrations
- 45. Frag. = fragment
- 46. HMA = host-mediated assay

